Electrical Design Guidelines
TABLE OF CONTENTS

1.0 ELECTRICAL DISCIPLINE

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>OVERVIEW</td>
<td>1</td>
</tr>
</tbody>
</table>

2.0 TECHNICAL AND CODE STANDARDS/REGULATIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>CODES AND STANDARDS ON ENGINEERING ONLINE (EOL) (1)</td>
<td>2</td>
</tr>
<tr>
<td>2.2</td>
<td>MINIMUM APPLICABLE & ADOPTED CONSTRUCTION CODES IN NEW YORK (2)</td>
<td>2</td>
</tr>
<tr>
<td>2.3</td>
<td>MINIMUM APPLICABLE & ADOPTED CONSTRUCTION CODES IN NEW JERSEY (3)</td>
<td>2</td>
</tr>
</tbody>
</table>

3.0 DESIGN CRITERIA & SPECIAL REQUIREMENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>SPECIALTY REQUIREMENTS</td>
<td>3</td>
</tr>
<tr>
<td>3.1.1</td>
<td>PATH</td>
<td>3</td>
</tr>
<tr>
<td>3.1.2</td>
<td>TUNNELS, BRIDGES, AND TERMINALS</td>
<td>4</td>
</tr>
<tr>
<td>3.1.3</td>
<td>PORTS</td>
<td>7</td>
</tr>
<tr>
<td>3.1.4</td>
<td>AVIATION</td>
<td>7</td>
</tr>
<tr>
<td>3.1.5</td>
<td>WTC</td>
<td>12</td>
</tr>
<tr>
<td>3.1.6</td>
<td>CORROSION CONTROL</td>
<td>12</td>
</tr>
</tbody>
</table>

3.2 TECHNICAL POLICY STATEMENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1</td>
<td>PVC – INSULATED WIRE, COATED STEEL & NM-PVC TYPE CONDUIT</td>
<td>17</td>
</tr>
<tr>
<td>3.2.2</td>
<td>SEPARATION OF MEDIUM VOLTAGE FEEDERS AND DUCTBANKS</td>
<td>17</td>
</tr>
<tr>
<td>3.2.3</td>
<td>STANDARD FOR MEDIUM VOLTAGE PULL-THROUGH</td>
<td>17</td>
</tr>
<tr>
<td>3.2.4</td>
<td>MEDIUM VOLTAGE REDUNDANCY</td>
<td>17</td>
</tr>
<tr>
<td>3.2.5</td>
<td>LOW VOLTAGE REDUNDANCY</td>
<td>17</td>
</tr>
<tr>
<td>3.2.6</td>
<td>SEISMIC DESIGN REQUIREMENTS</td>
<td>17</td>
</tr>
<tr>
<td>3.2.7</td>
<td>SUPPORTS</td>
<td>18</td>
</tr>
<tr>
<td>3.2.8</td>
<td>CLASSIFIED AREAS</td>
<td>18</td>
</tr>
<tr>
<td>3.2.9</td>
<td>CLIMATE RESILIENCY</td>
<td>18</td>
</tr>
</tbody>
</table>

4.0 DETAILS, NOTES, AND CUSTOM SPECIFICATIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>SERVICE SUBSTATION</td>
<td>19</td>
</tr>
<tr>
<td>4.1.1</td>
<td>LOAD ANALYSIS/CALCULATIONS (SAMPLE LOAD LETTER)</td>
<td>19</td>
</tr>
<tr>
<td>4.1.2</td>
<td>SWITCHGEARS SELECTION</td>
<td>21</td>
</tr>
<tr>
<td>4.1.3</td>
<td>ELECTRICAL SPACES LAYOUT</td>
<td>21</td>
</tr>
<tr>
<td>4.1.4</td>
<td>NETWORK PROTECTOR COMPARTMENTS, TRANSFORMER VAULTS, AND BUS ROOMS</td>
<td>21</td>
</tr>
<tr>
<td>4.1.5</td>
<td>GROUNDING</td>
<td>22</td>
</tr>
</tbody>
</table>

4.2 POWER DISTRIBUTION SYSTEMS - LOW VOLTAGE

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1</td>
<td>LOAD ANALYSIS/CALCULATIONS (SAMPLE LOAD LETTER)</td>
<td>22</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Equipment Sizing</td>
<td>23</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Low Voltage Switchgears/Switchboards</td>
<td>23</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Transformers</td>
<td>24</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Panelboards</td>
<td>25</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Circuit Breakers and Fuses</td>
<td>26</td>
</tr>
<tr>
<td>4.2.7</td>
<td>Motor and Motor Control</td>
<td>26</td>
</tr>
<tr>
<td>4.2.8</td>
<td>Electrical Spaces Layout</td>
<td>27</td>
</tr>
<tr>
<td>4.2.9</td>
<td>Wire Types and Sizing: Indoor/Outdoor Distribution</td>
<td>28</td>
</tr>
<tr>
<td>4.2.10</td>
<td>Race Way Types and Minimum Sizes</td>
<td>28</td>
</tr>
<tr>
<td>4.2.11</td>
<td>Manholes and Handholes</td>
<td>29</td>
</tr>
<tr>
<td>4.3</td>
<td>Power Distribution Systems- Medium Voltage (5kV - 35kV System)</td>
<td>30</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Load Analysis/Calculations (Sample Load Letter)</td>
<td>30</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Equipment Sizing</td>
<td>31</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Switchgears (Non-Utility Interconnection)</td>
<td>31</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Electrical Spaces Layout</td>
<td>31</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Vertical Distribution</td>
<td>32</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Terminations and Splices</td>
<td>32</td>
</tr>
<tr>
<td>4.3.7</td>
<td>Cable Types and Sizing</td>
<td>32</td>
</tr>
<tr>
<td>4.3.8</td>
<td>Raceways Types and Minimum Sizes</td>
<td>33</td>
</tr>
<tr>
<td>4.3.9</td>
<td>Pull Chambers and Splice Chambers</td>
<td>33</td>
</tr>
<tr>
<td>4.3.10</td>
<td>Manholes</td>
<td>34</td>
</tr>
<tr>
<td>4.4</td>
<td>Emergency Power Systems</td>
<td>34</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Generator Systems</td>
<td>34</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Batteries</td>
<td>34</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Uninterruptible Power Systems (UPS)</td>
<td>35</td>
</tr>
<tr>
<td>4.5</td>
<td>Lighting Systems</td>
<td>35</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Applicable Codes and Standards</td>
<td>35</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Lighting Terminology</td>
<td>36</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Exterior Lighting Design</td>
<td>38</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Light Fixture Selection Criteria</td>
<td>39</td>
</tr>
<tr>
<td>4.5.5</td>
<td>Exterior Lighting Levels</td>
<td>40</td>
</tr>
<tr>
<td>4.5.6</td>
<td>Exterior Lighting Design Considerations</td>
<td>51</td>
</tr>
<tr>
<td>4.5.7</td>
<td>Exterior Lighting Controls</td>
<td>58</td>
</tr>
<tr>
<td>4.5.8</td>
<td>Interior Lighting</td>
<td>58</td>
</tr>
<tr>
<td>4.5.9</td>
<td>Lighting Calculation Requirements</td>
<td>59</td>
</tr>
</tbody>
</table>
4.6 **LIFE SAFETY & SECURITY SYSTEMS** ... 60
 4.6.1 **FIRE DETECTION AND ALARM SYSTEMS** .. 60
 4.6.2 **EMERGENCY POWER** .. 64
 4.6.3 **SMOKE CONTROL AND PURGE** ... 65
 4.6.4 **CCTV** .. 66
 4.6.5 **CONTROL CENTER** .. 66
 4.6.6 **COMMAND CENTER** .. 66
 4.6.7 **PIDS** ... 66
 4.6.8 **RADIO** .. 66

4.7 **COMPUTER CENTER REQUIREMENTS** ... 66

4.8 **ELECTRONIC SYSTEMS** ... 67

4.9 **CORROSION CONTROL** .. 67
 4.9.1 **MATERIALS SELECTION** .. 67
 4.9.2 **COATINGS** .. 67
 4.9.3 **INHIBITORS/WATER TREATMENT** ... 68
 4.9.4 **CATHODIC PROTECTION SYSTEMS** .. 68
 4.9.5 **STRAY CURRENT MONITORING, MITIGATION, AND CONTROL** 73

4.10 **LIGHTNING PROTECTION** .. 74
 4.10.1 **REFERENCE** ... 74

5.0 **REFERENCE MATERIALS** .. 75
 5.1 **TECHNICAL AND CODE STANDARDS** .. 75
 5.1.1 **BUILDING CODES** .. 75
 5.2 **GUIDELINES** .. 75
 5.2.1 **PORT AUTHORITY OF NY & NJ** ... 75
 5.2.2 **FEDERAL AND STATE** ... 75
 5.3 **REGULATORY REQUIREMENTS** ... 75
 5.3.1 **FEDERAL AND STATE** ... 75
 5.4 **CONTRACT DOCUMENTS** .. 75
 5.5 **CONTRACT DRAWINGS** .. 75
 5.6 **CAD STANDARDS** ... 75
 5.7 **NOTE STANDARDS** .. 75
 5.8 **CONTRACT SPECIFICATIONS** ... 75
 5.8.1 **STANDARD SPECIFICATIONS** .. 75
 5.8.2 **CUSTOM SPECIFICATIONS** ... 75
 5.9 **NET COST** ... 75
1.0 ELECTRICAL DISCIPLINE

1.1 OVERVIEW

These guidelines are provided as an overview of the Port Authority’s design standards. Design details and associated documents outlined in these documents will be provided to the success client.

The Guidelines shall not replace professional design analyses nor are the Guidelines intended to limit innovative design where equal performance in value, safety, and maintenance economy can be demonstrated. The design team shall be responsible for producing designs that comply with the Guidelines in addition to all applicable codes, ordinances, statutes, rules, regulations, and laws. Any conflict between the Guidelines and an applicable code, ordinance, statute, rule, regulation, and/or law shall be addressed with the respective functional chief. The use and inclusion of the Guidelines, specifications, or example drawing details as part of the Contract Documents does not alleviate the design professional from their responsibilities or legal liability for any Contract Documents they create. It is also recognized that the Guidelines are not universally applicable to every project. There may be instances where a guideline may not be appropriate. If the design professional believes that a deviation from the Guidelines is warranted, such a deviation shall be submitted in writing for approval to the respective functional chief.

The Electrical Discipline prepares contract drawings, specifications, construction cost estimates, and construction staging plans for the installation and rehabilitation of power, lighting, fire alarm, communication, computer data, security, and various other electronic systems at the various Port Authority of New York & New Jersey facilities. During the design of these systems, the Electrical Discipline staff performs condition surveys and prepares master plans, conceptual designs, contract drawings, specifications, construction staging, cost estimates, etc. The design guidelines contained herein are provided as an aid and reference for the engineering and design services outlined above.

Acronyms used throughout this guideline are defined in Appendix A.
2.0 **TECHNICAL AND CODE STANDARDS/REGULATIONS**

2.1 **CODES AND STANDARDS ON ENGINEERING ONLINE (EOL)** (1)

2.2 **MINIMUM APPLICABLE & ADOPTED CONSTRUCTION CODES IN NEW YORK** (2)

2.3 **MINIMUM APPLICABLE & ADOPTED CONSTRUCTION CODES IN NEW JERSEY** (3)
3.0 **DESIGN CRITERIA & SPECIAL REQUIREMENTS**

3.1 **SPECIALTY REQUIREMENTS**

3.1.1 **PATH**

The PATH Electrical System consists of:

- The Traction Power System, (27 KV AC to 650 VDC)
- The Emergency Ventilation, (Smoke Purge), Passenger Station Emergency Evacuation System and Tunnel Flooding Prevention (15 KV to 480 VAC)
- The Low Voltage Auxiliary Power System, (Passenger Station Lighting and Auxiliary Equipment and Tunnel low voltage power and Lighting system (480 Volts to 208/120 volts)
- The PATH SCADA System

3.1.1.1 **THE TRACTION POWER SYSTEM INCLUDES THE FOLLOWING CONVERSION AND DC DISTRIBUTION EQUIPMENT:**

- 26.4 KV Utility (PSE&G) incoming Switchgear, PATH 26.4 KV distribution switchgear, AC to DC Conversion equipment, (Traction Power Transformers and Rectifiers) and DC distribution equipment (DC substation feeder breakers, feeder cables, track switches and tunnel breakers), this equipment is designed in accordance with Contract requirements including Drawings and Standard and Custom PANY & NJ Specifications, ANSI and IEC Standards, NEC and PATH Requirements.

- 26.4 KV feeder cables from the 34.5 KV PATH Switchgear in Substations 2 (Washington Street) and PATH Substation 15(Caisson) provide incoming 27 KV power to the Traction Power equipment (34.5 KV switches) in Substations 1,3 and 4 located in the PATH tunnel system, these feeder cables are routed in different PATH tunnels for redundancy.

- PATH Substations 15, 5, 7, 8, 9 and 15 are fed from 26.4 KV PSE & G loop feeders, Substation 2 is fed from 3- 26.4 KV PSE & G feeders.

3.1.1.2 **THE EMERGENCY VENTILATION SYSTEM, (SMOKE PURGE), PASSENGER STATION EMERGENCY EVACUATION SYSTEM (15 KV TO 480 VAC) AND TUNNEL FLOODING PREVENTION (480 VAC) INCLUDES THE FOLLOWING EQUIPMENT: THIS SYSTEM IS DESIGNED PER NFPA 130, NEC, STANDARD AND CUSTOM PA SPECIFICATIONS, CONTRACT DRAWINGS AND PATH REQUIREMENT.**

The 15 KV Emergency System is derived from the 26.4 KV PATH Distribution System Via 1-26.4 KV / 13.8 KV 10, MVA low Impedance transformer in Substation 15 and 2-5 MVA 26.4 KV / 13.8 KV low impedance Transformers in Substation 2A and 15 KV distribution switchgear. 15 KV emergency feeders are routed in separate PATH tunnels in accordance with NFPA 130, from the originating 15 KV switchgear in PATH Substations 2A and 15 to the Emergency Ventilation 15 KV switches, 13.8 KV/ 480 Volt Transformers, 480 Volt Switchgear and Emergency Smoke Purge Fans and other Emergency Loads.

3.1.1.3 **THE LOW VOLTAGE AUXILIARY POWER SYSTEM 480 VOLT**

This system is fed from Local Con Edison, PSE&G and PATH System low voltage power and is designed in accordance with PA Contract Documents, including Standard PA Specifications, and Drawings, PATH requirements, New York City Electrical Code, NEC and all codes and standards as listed in the Standard PA Specifications.
3.1.1.4 THE PATH SCADA SYSTEM

The PATH SCADA System Includes Normal and Back-Up control locations. Normal Control is from C Yard Control Center and Back-Up is from HOBAN Control Center (Journal Square), Indication and control is provided for The PATH Traction Power System and the 15 KV Emergency System. The following is Typical Equipment that is monitored and controlled:

- 38 KV AC Switchgear
- 15 KV AC Switchgear
- 480 Volt AC Switchgear
- 480/208 Volt AC Emergency Generators
- 800 VDC Switchgear
- 800 VDC Track Breakers
- 800 VDC Rectifiers
- Rectifier Transformers
- Auxiliary Transformers
- Automatic Transfer Switches
- 125 VDC Battery Systems and Rooms including CO monitors and Alarms
- Tunnel Smoke Purge Fans
- Substation Security (CCTV, Door Alarms, etc.), Substation Temperature and Fire Detection
- Station Ventilation Fans

The Path SCADA System is designed in accordance with Contract Documents, including Standard PA Specifications, and Drawings, PATH requirements, New York City Electrical Code, NEC and all codes and standards as listed in the Standard PA Specifications.

3.1.2 TUNNELS, BRIDGES, AND TERMINALS

3.1.2.1 TUNNELS

In order to maintain and expedite vehicular traffic through the tubes of Port Authority of New York & New Jersey tunnels, a reliable and interrupted source of electrical power shall be available at all times. Two utility companies are employed for supplying the power required for the tunnels’ operation: The Consolidated Edison Co. (Con Ed), which supplies power to the tunnels on the New York side of the Hudson River and the Public Service Electric and Gas Co. (PSE&G), which supplies power to the tunnels on the New Jersey side of the river. Each of the above utilities is providing the required power through three 15kV feeders; therefore, there are six incoming 15kV feeders at each of the tunnels. This configuration allows for design and construction work to consider shutting down one or even more feeders at a time. It should be noted that under extreme emergency condition, tunnel emergency and essential equipment may be operated from only one 15kV feeder from either utility company. However, this type of emergency operation is not allowed to be considered as a design criterion when preparing any design documents. A minimum of three operational 15kV feeders shall be available at any time to avoid operating the tunnel at reduced capacity.

Tunnel power distribution systems, as well as miscellaneous electrical equipment, shall be remotely controlled at any time by a centralized system called Supervisory Control and Data Acquisition (SCADA). This system shall maintain the capability of providing status and control of the following but not limited to:
15kV, 480V, and 208V switchgear
- Ventilation fans
- Tunnel lighting
- Pumps (sump, booster, vacuum pumps)
- DC control system
- Carbon monoxide (CO) monitors and alarms
- Security equipment (closed circuit TV [CCTV], door alarms, etc.)
- Fire standpipe
- Smoke detection alarms
- Emergency panel transfer switches

For lighting requirements in the tunnels refer to Lighting Systems.

No polyvinyl chloride (PVC)-coated conduits are allowed to be installed in tunnels.

Cables and wires (further called “cables”) to be installed in the tunnels should comply with the following requirements:

- No PVC-insulated cables are allowed to be installed in tunnels except for communication systems, remote control, and signaling and power-limited circuits.
- Cables shall have a thermoset, low smoke, zero halogen, cross-linked polyolefin insulation.
- Cables shall pass the flame propagatory test VW-1, be Underwriters Laboratories, Inc. (UL) listed as XHHW-2 rated 90 degrees for both wet and dry applications. Full requirements for these cables are indicated on PA Standard Specification 16120.

3.1.2.2 BRIDGES

Electrical design shall consider the following:

- All conduits to be supported in an applicable manner in orientation and loads according to manufacturer specifications and recommendations.
- All conduits vertically mounted using Unistrut®, Kindorf®, or similar supports shall be installed in such a way to prevent any conduit slippage due to excessive vibrations, either utilizing a cantilever bracket, a two-hole strap, or stop-nuts.
- Beam clamps shall not be used to support conduit mounted in a vertical fashion.
- All conduit support shop drawings shall be approved by the engineer prior to construction.
- Expansion/deflection fittings have to be installed not only on long conduit runs but also wherever conduits pass through structural joints.

3.1.2.3 TERMINALS

3.1.2.3.1 Retail Services

The retail services shall be independent from the Port Authority of New York & New Jersey systems.
3.1.2.3.2 Electrical Emergency Power

Emergency power generators shall be located in a sound-attenuated, walk-in, waterproof enclosure with a panel board connected to the emergency power distribution system. Provide adequate (as a minimum “code mandated”) working and clearance spaces. All bathroom lighting luminaires and plumbing luminaires that have electrical controls shall be on the emergency power system.

3.1.2.3.3 Automatic Transfer Switch

The automatic transfer switch (ATS) shall be a four-pole, four-wire with bypass provisions, override switches, UL 1008 listed, and shall have as a minimum the following meters: volts, amperes (phase-to-phase and phase-to-neutral), frequency, amperes demand (one/phase and one average three phase), kilowatt hours, and kilowatt demand.

3.1.2.3.4 Electronic Ballasts

Provide electronic ballasts and fluorescent lamps with a combined efficiency in excess of 80 lumens/watts. Employ newer lamp types (compact fluorescent, light-emitting diode [LED], etc.) wherever applicable.

3.1.2.3.5 Programmable Lighting Control

Programmable lighting controls shall be used to conserve energy. The system shall be flexible and easy to use with a warning of an impending “off” cycle to allow occupants to commence an override.
3.1.2.3.6 **Occupancy Sensors**
Occupancy sensors shall be used whenever possible in conference rooms, bathrooms, and single-occupancy offices or rooms.

3.1.2.3.7 **Multilevel Switching**
Multilevel switching shall be used on all fluorescent lighting consisting of three or more lamps.

3.1.2.3.8 **Day Lighting**
Spaces with large amounts of exterior glass or skylights shall utilize photocell control of electric lighting.

3.1.3 **PORTS**
<<Under Development>>

3.1.4 **AVIATION**

3.1.4.1 **AVIATION LIGHT LUMINAIRES**

A. Runway Luminaires: All runway luminaires except elevated edge lights shall be PRO-III type flush inset luminaires. However, in case of all 12 inches of optical housing, such as inset runway edge lights, land and hold short operations (LAHSO) lights, touchdown zone lights, etc., suitable snow plow rings shall be used along with a set of beveled spacer rings for proper adjustment of snow plow rings to avoid any damage during snow plowing operations. All elevated edge lights shall be located at least 10 ft. from the painted runway edge lines. For operations under Category I configuration, both runway centerline, elevated edge lights, and runway end identification lights shall be provided. Touchdown zone lights shall be additionally installed at both ends for all Category II and III configurations.

B. Taxiway Luminaires: All taxiway luminaires shall be PRO-III type flush inset luminaires. Either elevated edge lights or centerline lights shall be provided for all normal operations. For low visibility Category II and III movements on taxiways, both centerline lights and elevated edge lights, shall be installed for safety.

3.1.4.2 **FIXTURE SUPPORT BASE AND EXTENSION CANS**

A. Base Cans: Replace all existing galvanized L-868 load-bearing base cans located on runways by new stainless-steel base cans of adequate wall thickness and depth to avoid any future corrosion problems due to use of potassium acetate as deicing fluids. For taxiways, in case of full-depth milling and paving work, replace existing base cans by new hot-dip galvanized base cans of adequate wall and base thickness. In case of runway edge light base cans, replace all L-867 single cans by hot-dip galvanized steel base cans of adequate wall and bottom thickness.

B. Extension Cans: Replace all existing extension cans of both runways and taxiways by new hot-dip galvanized extension cans of proper depth matching with the finished pavement level.

3.1.4.3 **RUNWAY GUARD BARS AND COMPUTERIZED CONTROLS**

A. All in-pavement runway guard bar light luminaires on taxiways shall be PRO-III type luminaires. For all guard bar locations, elevated dual guard bar light luminaires shall be provided on both sides of the taxiways in addition to the in-pavement light luminaires for
safety during snowy environment. Runway guard bar luminaires shall flash at a rate and sequence as per Federal Aviation Administration (FAA) latest circulars. In case of any power failure, all the luminaires shall start flashing within a few seconds of power restoration as per FAA requirements.

B. The monitoring and control of all runway guard bar light luminaires shall be fully computerized from switchhouses, maintenance and operation centers, and control tower for airportwise effective supervision of traffic. The mode of communication between the guard bar lights and the remote computers shall be either power line carrier utilizing the existing series lighting network of cables or wireless communication trans-receiver sets and fiber optic cable network. The guard bar computer shall seamlessly communicate with the aviation lighting control computer.

3.1.4.4 Constant Current Regulators

Constant current regulators shall be ferro-resonance type, rated 20KW, dry type, indoor model, either suitable for stacking or cubic housing. All regulators shall be provided with five steps and suitable digital cards to communicate with the airport lighting control computer located in the control tower.

3.1.4.5 Series Lighting Cables and Connectors

A. Series lighting high-voltage 5 KV non-shielded cables shall be single conductor with semi-conducting tape over the conductor, ethylene-propylene rubber (EPR) insulated with overall black chlorinated polyethylene (CPE) jacket. All series lighting cables shall be FAA L-824 Type-B and shall be suitable for use in conduits laid in kerf cuts or ductbank.

B. Single-pole series lighting cable connectors shall be plug and receptacle with insulated compression type connectors suitable for the cable size, FAA L-823 certified, and water resistant quick disconnect with rubber sleeve over the finished joint.

3.1.4.6 Underground Ductbank and Kerf Cuts

A. Underground concrete encased ductbank with PVC schedule 40 conduits shall be utilized for all series cable lighting circuits. The top of conduit inside the ductbank shall be at least 30 inches below the grade. All ductbank along with handholes and manholes shall be located beyond runway/taxiway safety area for ease of maintenance.

B. All PVC schedule 40 conduits for series lighting circuits inside concrete encased kerf cuts shall be at least 18 inches below the grade. Usually one or two conduits shall be laid inside kerf cuts in airside of airports. Kerf cuts are preferred in place of ductbanks to avoid any major soil disturbance in safety area of taxiways/runways. Any conduit directly buried in earth is not acceptable within airport area.

3.1.4.7 Computerized Airportwise Light Control

A. All taxiways and runways including jet run-up pad areas are provided with aviation light luminaires as per FAA operational and safety requirements. Monitoring and control of all these lights are done by the operators located inside the control tower with the help of command touch screens giving graphical display of all light luminaires and digital computers working in conjunction with the constant current regulators housed inside different lighting vaults.

B. For the sake of monitoring functioning of all lights, similar industrial-grade computers with flat panel touch screen graphical displays of all taxiways and runways lights shall be
provided inside standard cabinets inside all lighting vaults for ease of maintenance purpose.

3.1.4.8 LED LUMINAIRES FOR TAXIWAYS

A. LED luminaires utilized for any edge lighting shall be suitable for connection to the existing 6.6A series lighting circuit. All LED luminaires shall be complete with a space heater controlled by a thermostat for proper operations during snowy days.

B. LED luminaires for taxiways centerline lights shall be PRO-III type and shall be suitable for connection from 6.6A series lighting circuit. Monitoring of centerline LED lights from computer-controlled systems shall be ensured especially on taxiways recommended for surface movement guidance control system (SMGCS) operations.

3.1.4.9 EMERGENCY DIESEL GENERATORS

A. Non-FAA emergency diesel generator sets shall be three-phase, low-voltage type located near the lighting vaults for back-up power to all regulators and shall be rated for supplying all series circuit lights supplied from the particular lighting vault in the airport. For smooth airport operations, black start of the emergency set shall be as per FAA guidance.

B. The emergency generator set along with load bank and all accessories shall be housed inside a prefabricated weatherproof steel building painted in checkerboard fashion with FAA-approved aviation orange and white paints and shall be complete with all light and ventilation requirements.

3.1.4.10 FAA LIGHT LUMINAIRES AND FAA SUBSTATIONS

A. All FAA light luminaires required for navigation/al aid (NAVAID) and visual aid (VISAID) under Category I, II, or III mode of airport operations shall be properly coordinated with Port Authority of New York & New Jersey lights located on runways and shall be supplied through a separate set of FAA cables and ductbank and kerf cut conduit network.

B. One FAA substation per each runway end shall be suitably located beyond the safety area inside a prefabricated steel building suitably checkerboard painted for visibility. The high-voltage step-down transformers and switchgear cubicles feeding the substation shall be located outdoors but close to the FAA substation.

3.1.4.11 SWITCHHOUSE STRUCTURES AND EQUIPMENT

A. All switchhouses shall be located inside airport airside operation areas close to runways and taxiways for ease of series lighting circuit distribution through ductbanks. Switchhouse structures shall be as per latest Leadership in Energy and Environmental Design (LEED) requirements and located above the 100-year worst flood water level.

B. Each switchhouse shall be complete with adequate lights, ventilation fans, radiant space heaters, security cameras, and fire alarm system. The layout of equipment inside shall ensure proper segregation of all high-voltage power equipment away from computerized control and monitoring systems.

3.1.4.12 FAA CONTROL TOWER INTEGRATION

All aviation light computerized control and monitoring systems through fiber optic cable networks shall be from FAA operators located inside the control tower. Location of all liquid crystal display (LCD) flat-panel
graphical touch screens for remote light control and monitoring shall be properly coordinated with the FAA control panel layout inside the tower.

- **Reference Design Documents:**
 - FAA Airport Design Advisory Circular AC 150/5340-30B
 - Crouse-Hinds Airport Design Guide Book
 - FAA Airport System Planning Process Advisory Circular AC 150/50-70-7
 - FAA Order No. 6850.2A: Visual Guidance Lighting Systems
 - FAA Advisory Circular AC 150/5340-17B: Stand-by Power for Non-FAA Airport Lighting Systems
 - PA Standard Aviation Installation Details and Procedures
 - Jaquith/VEGA Airport Hardware Details
 - FAA Specification No. FAA-STD-019C
 - IESNA TM-16-05: Technical Memorandum on Light Emitting Diode Sources and Systems

3.1.4.13 **Medium Voltage Power System, EWR, JFK, and LGA Airports**

A. Medium voltage (over 600 volts) switchgear, transformers, and splicing chambers, which are installed indoors, shall be installed in electrical vaults.

B. The flood protection criteria for the electrical vaults shall be designed per the latest Port Authority Climate Resilience Design Guidelines. At a minimum, electrical vaults shall be located above the Base Flood Elevation (BFE). The design team shall work with the Climate Resilience Specialist to determine if a higher Design Flood Elevation (DFE) is required for the project.

C. The incoming service shall be designed with a minimum of two feeders with automatic switch-over operation. The service shall be either:
 1. Primary Selective
 2. Secondary Selective
 3. Primary and Secondary
 4. Selective Spot Network

D. Primary selective switchgear shall be arranged with a mechanically interlocked tie switch to allow one feeder to supply the entire load. Medium voltage switchgear shall be as manufactured by the S&C Company.

E. Each incoming service switch shall be provided with a grounding switch, arranged to ground the incoming feeder (line side of switch). Mechanical Interlocks shall be provided to prevent closing the grounding switch if the feeder is energized. A key interlocking system shall be provided for the incoming equipment (Load Interrupter Switch(s), Grounding Switch(s), Low Voltage Main Breaker(s), as applicable) in compliance with the “Interlocking and Grounding” procedures at each specific airport and for each specific application.

F. The interrupting rating shall be 270MVA minimum for JFK International and LaGuardia Airports and shall be based on short circuit calculations or studies.
G. All incoming feeders shall be copper conductor, MV-105, 133% EPR insulated, Flat Strap Cable (FSC), in accordance with Port Authority of New York & New Jersey Standard Specification, Section 261000. Copper sheath cables are not permitted. The main feeder size shall be 500 kcmil for LaGuardia Airport and 500 kcmil or 750 kcmil for JFK Airport, as determined by the Port Authority of New York & New Jersey. The minimum tap size shall be 4/0 AWG. Cables shall be manufactured by a factory approved by Con Edison.

H. For indoor and outdoor installations, transformers shall be dry type cast coil construction (primary and secondary).

I. Drawings shall include a complete one-line diagram showing all primary connections, protective devices, relay protection, switching and interlocks; power sources, routing and feeder designations; size and type of feeder and conduit; KVA rating; types and voltages of all transformers; and all load data in justification of the amount of power requested (load letter). Power riser diagram can be provided in addition to One Line Diagram, but not in lieu of. Key interlock schematic & procedure for service substation(s) shall be included. The load letter shall be prepared and submitted to the Port Authority of New York & New Jersey in a format similar to utility company letters and shall provide a breakdown of major types of loads, shall indicate the largest motor load, total anticipated demand, any assumptions for watts/square foot, etc.

J. Shop drawing and catalog cuts for the medium voltage switchgear, transformers, cables, splices, and terminations shall be submitted for approval.

K. Port Authority of New York & New Jersey specifications for the medium voltage installation shall be used.

L. A short-circuit current calculation, coordination study and arc flash analysis, for the proposed power system shall be submitted for review.

M. Each incoming service shall be provided with required Port Authority of New York & New Jersey-approved metering current transformers (CTs) and potential transformers (PTs). The CTs and PTs shall be connected to the primary side of the incoming feeders.

N. Dual-power sources with automatic transfer from both incoming feeders’ metering PTs shall be provided for a totalizer, if provided.

O. Provide a fire-treated plywood backer board for mounting the required meter pans and other metering devices including conduits, fittings, and wires for the installation of Port Authority of New York & New Jersey meters and totalizer. Metering equipment to be installed outdoors shall have a National Electrical Manufacturers Association (NEMA) Type 4X stainless steel enclosure. Meters and totalizer will be provided by the Port Authority of New York & New Jersey and shall be installed by the tenant.

P. Underground conduits to be used for the medium-voltage power distribution system shall be concrete encased fiberglass reinforced epoxy (FRE). Minimum conduit size shall be 5 inch. Refer to Chapter 3.2.2 for ductbank separation and Chapter 4.3.8.1 for spare conduit requirements.

Q. Between manholes in the medium-voltage power system, the total bending radius for underground duct banks shall not exceed 90 degrees and shall utilize wide sweeps.

R. Calculations of maximum pulling tension for all medium-voltage cable to be installed into the underground duct banks shall be submitted for review.

S. All manholes shall be designed as per Appendix B - Port Authority (PA) Electrical Standard Details. Size of manhole shall be determined based on the number and size of cables,
wires, and conduits allowed. For areas where a PA-standard manhole is not appropriate, submit a proposed manhole design including all dimensions and design calculations for review.

T. Medium voltage power systems at EWR are provided and distributed by PSE&G. From PSE&G, the Port Authority primarily receives and distributes low voltage systems. In instances where the Port Authority distributes medium voltage power systems at EWR, the design shall conform to the standards and guidelines set forth above.

3.1.5 WTC

<<Under Development>>

3.1.6 CORROSION CONTROL

The primary goals of the corrosion control program are to develop and maintain dependable and long-lived structures, equipment and systems; conserve energy; reduce costs due to corrosion; and ensure compliance with the New York State Department of Environmental Conservation (NYSDEC), the New Jersey Department of Environmental Protection (NJDEP), and other applicable regulations and guidance.

The design of the systems shall take into account the presence of stray currents and their impact on existing and proposed structures, and the impact of connecting structures into existing cathodically protected structures. All tenant hydrant fueling systems shall be electrically isolated from the Port Authority of New York & New Jersey fueling mains.

The design shall take into account the monitoring requirements for compliance with the respective state agencies and federal regulations for corrosion control. Provisions shall be made to allow the effectiveness of all installed dielectric isolation devices (flange isolation kits, etc.) to be tested periodically without the need for confined space entry into vaults, etc.

In New York, all cathodic protection systems shall be registered with the "Greater New York Corrosion Committee" and in New Jersey, all cathodic protection systems shall be registered with the "New Jersey Committee on Corrosion."

3.1.6.1 CATHODIC PROTECTION

Corrosion protection shall be implemented for the structures listed under Cathodic Protection and Corrosion Protection to meet life cycle cost/reliability requirements of the respective discipline.

- Structures that are required by regulation to be cathodically protected are:
 - Airport fueling lines.
 - Underground fuel storage tanks and associated piping.
 - Aboveground fuel storage tanks and associated piping.
 - Underground liquefied propane storage tanks and associated piping.

If applicable, the cathodic protection systems shall be compatible with the existing systems at the Port Authority of New York & New Jersey facility.

3.1.6.2 CORROSION PROTECTION

A related goal is to maximize public safety by prevention of failures of critical structures due to corrosion. Structures that are to be considered for corrosion protection include:

- High pressure water mains, particularly firewater mains.
Firewater storage tanks.
- Pier support structures (pipe piles, caissons, sheet piling).
- Steel reinforcement in concrete structures.
- Building foundation columns and other structural steel buried in soil or embedded in concrete.

3.1.6.3 METHODS

Corrosion control keeps the effects of electrochemical or chemical attack on materials by the environment to a minimum. Corrosion control measures include:
- Corrosion Control by Design and Material Selection—Materials shall be selected based on resistance to corrosion in the respective environment in which they will operate.
- Use of protective coatings to reduce atmospheric corrosion and cathodic protection currents requirements.
- Use of cathodic protection to eliminate electrochemical reactions.
- Monitoring of effects of stray direct currents (DC) on structures adjacent to sources of current such as DC transit systems (e.g., AirTrain, PATH).

3.1.6.4 DESIGNER REQUIREMENTS

The design of all corrosion control/cathodic protection systems shall be performed by a National Association of Corrosion Engineers (NACE) International-certified Corrosion Specialist or Cathodic Protection Specialist.

Designers shall:

A. Be qualified in the field of corrosion protection, namely certified by NACE as a Corrosion Specialist or Cathodic Protection Specialist and be a registered Professional Engineer in the State of New York or New Jersey, as appropriate for the facility.

B. Use field surveys, field tests, and experience of installation personnel during the design phase.

C. Provide corrosion control systems that are fully coordinated and completely integrated with existing corrosion protection systems at the facility.

D. Specify the testing necessary for the final acceptance of the corrosion control system. Target values of system operating parameters will be part of this testing to ensure the facility will function within design limits upon completion of construction of the system.

E. Incorporate operability and maintainability into the overall design of the corrosion control systems. Designs shall provide minimum life-cycle cost over the facility life expectancy.

F. Provide detailed calculations and one-line diagrams at Stage I to show the magnitude and layout of the corrosion control system. For example, validate the use of pre-engineered tanks with factory-installed cathodic protection through appropriate calculations and field tests. Calculations shall show that the specified cathodic protection system will satisfy design life requirements of the respective state regulations (NYSDEC and NJDEP).

G. Provide corrosion control system drawings to show location of equipment, test points, sampling points, potential cathodic protection interference, items requiring periodic maintenance, and installation details.
The following types of cathodic protection systems shall be used, with the following exceptions:

1. Impressed current type CP (ICCP) shall be used for existing underground storage tanks (USTs) and associated piping, and for fueling piping distribution systems.

2. ICCP shall not be used on pier and wharf structures where the cost of providing alternating current (AC) power supply to the rectifiers would be excessive and where system maintenance costs would exceed structure maintenance costs. Galvanic type systems shall be utilized for these structures.

3. Galvanic type systems shall be used for new UST systems and short runs of well-coated piping. All new piping shall be electrically isolated from other structures, including existing piping, USTs and the grounding system.

4. Galvanic type systems shall not be used where the structures to be protected cannot be electrically isolated from grounded structures or cannot be provided with an effective coating system.

5. Galvanic anode type systems shall not be used where stray currents influence the structures to be protected.

3.1.6.5 DESIGN-APPLICABLE STANDARDS

- API Recommended Practice 1632, “Cathodic Protection of Underground Petroleum Storage Tanks.”
- NACE RP0169, “Standard Recommended Practice: Control of External Corrosion on Underground or Submerged Metallic Piping Systems.”
- NACE RP0285, “Standard Recommended Practice: Corrosion Control of Underground Storage Tank Systems by Cathodic Protection.”
- NACE RP0286, “Electrical Isolation of Cathodically Protected Pipelines.”
- NACE RP0187, “Design Considerations for Corrosion Control of Reinforcing Steel in Concrete.”
- NACE RP0288, “Inspection of Linings on Steel and Concrete.”
- NACE RP0388, “Impressed Current Cathodic Protection of Internal Submerged Surfaces of Steel Water Storage Tanks.”
- NACE RP0290, “Cathodic Protection of Reinforcing Steel in Atmospherically Exposed Concrete Structures.”
- NACE RP0390, “Maintenance and Rehabilitation Considerations for Corrosion Control of Existing Steel Reinforced Concrete Structures.”
- NACE RP0193, “External Cathodic Protection of On-Grade Metallic Storage Tank Bottoms.”
- NFPA 30, “Flammable and Combustible Liquids Code.”
- NFPA 30A, “Automotive and Marine Service Station Code.”
3.1.6.6 **DESIGN CRITERIA**

3.1.6.6.1 **Operating Requirements**
Operational requirements will vary depending on the situation. In atmospherically exposed situations, corrosion protection may be effected through material selection and/or coatings. For structures buried in soil, immersed in water or embedded in concrete, cathodic protection systems may be applicable. Structures installed adjacent to transit systems and thereby subject to stray current interference, need consideration of stray current mitigation and monitoring provisions. Impressed current cathodic protection systems must be energized and adjusted by a NACE-certified Corrosion Specialist, after the installation has been completed. These systems require an AC power supply in order to energize the rectifier. Continuous operation of the system must be assured by monitoring the rectifier output through visual inspection of the rectifier meters or the inclusion of a remote monitoring system. Galvanic anode systems do not require an external source of power and are fully operational once the installation has been completed. However, the effectiveness of the system must be verified by measurements by a Corrosion Specialist.

3.1.6.6.2 **Design Requirements**
In order to determine requirements for the corrosion control system of the facility structures under consideration, the following factors must be analyzed:

- Soil characteristics in the area of the installation.
- Atmospheric exposure conditions for above grade structures, including moisture content, temperature, pollution, and immersion conditions for marine structures.
- Dissimilar metals used in the different structures that comprise the structure being installed.
- Soil resistivity, pH, and chloride ion concentration in the area of the installation.
- Existence of stray current sources from DC-powered traction systems or impressed current cathodic protection systems.

If conditions indicate that cathodic protection is required, the design of the system must be such that the corrosion on the structure in question is mitigated, while not creating a condition that causes stray currents to discharge from other structures in the area.

A structure is considered to be protected from corrosion when it meets one or more of the following criteria:

- A negative (cathodic) potential of at least 850 mV with the cathodic protection applied. This potential is measured with respect to a saturated copper/copper sulfate reference electrode contacting the electrolyte. (See NACE RP0169 for consideration of voltage drops for valid interpretation of this criterion.)
- A negative polarized potential of at least 850 mV relative to a saturate copper/copper sulfate reference electrode. (See NACE RP0169 for definition of polarized potential.)
- A minimum of 100 mV of cathodic polarization between the structure surface and a stable reference electrode contacting the electrolyte. The formation or decay of polarization can be measured to satisfy this criterion.

All cathodic protection system designs and commissioning tests for fuel storage facilities in New Jersey shall be performed by an individual certified by the State of New Jersey as a Corrosion Specialist, in accordance with the requirements of Subchapter 13 of N.J.A.C. 7:14B of the New Jersey Department of Environmental Protection rules for underground storage tank facilities.
All cathodic protection systems shall be energized and tested by a NACE-certified Corrosion Specialist or Cathodic Protection Specialist. A report shall be prepared and submitted to the Port Authority of New York & New Jersey. The report shall document all settings, protection levels, and the impact of stray currents on all nearby structures. Recommendations for mitigation of said interference effects shall be included.

Where proposed, utility pipelines will run in proximity (within 100 feet) of DC-powered traction systems, provisions shall be incorporated into the design of the structures to measure the effects of stray currents on those structures.

3.1.6.6.3 Corrosion Control Test Stations

In order to evaluate the corrosion status of buried structures, such as pipelines, underground fuel storage tanks and above grade vessels such as water storage tanks, test stations for the measurement of potential, current, and resistance shall be provided at the following locations:

- Pipe casing installations.
- Metallic structure crossings.
- Isolation joints.
- Waterway crossings.
- Bridge crossings.
- Valve stations.
- Galvanic anode installations.
- Rectifier installations, including deep anode groundbeds.
- Stray current areas adjacent to transit systems such as AirTrain, New York City Transit (NYCT), or foreign impressed current cathodic protection systems.
- For the interior surfaces of water storage tanks on which cathodic protection has been installed.

3.1.6.6.4 Electrical Continuity

Electrical continuity is required for all buried piping that is either scheduled to be cathodically protected or will be affected by stray currents from transit systems or foreign cathodic protection systems. Continuity shall be established only by bonding across mechanical joints utilizing exothermic welding of the appropriate-sized conductors across the joints and between the components of the mechanical joints (follower rings, bolts, rods, etc.).

3.1.6.6.5 Electrical Isolation

Electrical isolation devices such as flange assemblies, prefabricated joint unions, or couplings should be installed within piping systems where electrical isolation of portions of the system is required to facilitate application of external corrosion control. These devices should be properly selected for temperature, pressure, chemical resistance, dielectric resistance, and mechanical strength. Installation of isolation devices should be avoided or safeguarded in areas in which combustible atmospheres are likely to be present. Locations at which electrical isolating devices should be considered include, but are not limited to, the following:

- Points at which facilities change ownership, such as fuel transfer lines at interfaces with terminal hydrant piping systems.
- Connections to main-line piping systems.
Connection of new piping to existing bare or electrically grounded piping.

Locations at which electrical grounding is used, such as motorized valves and instrumentation.

The need for lightning and fault current protection at isolating devices should be considered.

When metallic casings are required as part of the underground piping system, the pipeline should be electrically isolated from the casings. Casing insulators must be properly sized and spaced and be securely tightened on the pipeline to withstand insertion stresses without sliding on the pipe. Casing seals should be installed to resist the entry of foreign matter into the casing.

3.2 TECHNICAL POLICY STATEMENTS

3.2.1 PVC – INSULATED WIRE, COATED STEEL & NM-PVC TYPE CONDUIT

NM-PVC conduits, PVC coated steel conduits and PVC insulated wire shall NOT be installed inside any structure. See Port Authority Standard Specification 260533 – Raceway, for additional requirements.

3.2.2 SEPARATION OF MEDIUM VOLTAGE FEEDERS AND DUCTBANKS

A. Underground conduits to be used for the medium-voltage power distribution system shall be concrete encased fiberglass reinforced epoxy (FRE). Minimum conduit size shall be 5 inch. (empty) conduits,

B. Ductbanks of alternate feeders shall be separated by a minimum of 20 feet, measured from the inside edge of the ductbanks, and terminated in separate manholes. If separation of 20 feet is not possible, then the distance between edges of the duct banks can be decreased, with Port Authority approval, to 10 feet minimum with 1-inch steel plate installed 6” above both duct banks.

C. Between manholes in the medium-voltage power system, the total bending radius for underground duct banks shall not exceed 90 degrees and shall utilize wide sweeps.

3.2.3 STANDARD FOR MEDIUM VOLTAGE PULL-THROUGH

Where a medium voltage cable will be pulled through a manhole without a splice, it shall be trained around the manhole walls allowing for enough slack to allow a splice in the future.

3.2.4 MEDIUM VOLTAGE REDUNDANCY

The intent of the separation of duct banks and the configuration for primary/alternate and spot network requirements is to provide a consistent amount of redundancy to the medium voltage systems.

The purpose of duct bank separation is to provide protection to the duct bank system ensuring that if one duct bank is damaged during unrelated construction, the other is far enough away to remain in operation.

Every feeder shall be backed up by at least one feeder in a separate duct bank that has the spare capacity to accommodate the total load of the other feeder. This ensures that if a feeder trips or is taken out of service for maintenance, than the load can be picked up after automatic or manual transfer operations.

3.2.5 LOW VOLTAGE REDUNDANCY

<<Under Development>>

3.2.6 SEISMIC DESIGN REQUIREMENTS

<<Under Development>>
3.2.7 SUPPORTS
<<Under Development>>

3.2.8 CLASSIFIED AREAS
<<Under Development>>

3.2.9 CLIMATE RESILIENCY

The design of all new construction and major rehabilitation projects are to be evaluated for proper design flood elevations and for resiliency against potential power outages associated with severe storms. Designs shall adhere to flood protection criteria in Design Guidelines – Climate Resiliency chapter.

Where prohibiting factors preclude this criteria, the focus should be centered on critical project elements.

3.2.9.1 CRITICAL ELECTRICAL POWER EQUIPMENT

Consider design criteria for elevating or protecting critical power equipment. Designs shall include provisions for connection to portable generator(s).

3.2.9.2 RADIO AND OTHER SENSITIVE ELECTRONIC EQUIPMENT

Consider design criteria for elevating or protecting radio and other critical electronic equipment. Designs shall include provisions for connection to portable generator(s) were feasible with appropriate load management. Consider more resilient HVAC designs for locations that house radio and electronic equipment, which may include redundant mechanical system design elements and standby power for the associated mechanical equipment.
4.0 DETAILS, NOTES, AND CUSTOM SPECIFICATIONS

4.1 SERVICE SUBSTATION

Included under this category are:

- 480-volt spot network substation, where utility-furnished stepdown transformers and collector bus compartment are located on Port Authority of New York & New Jersey property.

- High-tension service where utility metering is at 2,400 volts or higher and the Port Authority of New York & New Jersey provides the stepdown transformers.

For typical configurations and breaker schematics see Appendix B sketches SKE-01 and SKE-02. Not included in this section are 120/208-volt services from a low-voltage network.

Generally, the utility will provide low-tension (600 volts and below) or high-tension service (2,400 volts and higher), depending upon various considerations.

As early as possible during the design process, a load letter and a request for fault current availability must be sent to the utility. The load letter will enable the utility to identify service options, for example, voltage and contingency design (e.g., N-1, N-2), and to indicate associated time frames for availability. Request a minimum of N-1 contingency service from the utility. In some cases, the utility may provide N-2 service (second contingency) if that is standard for that service area (e.g., in Manhattan, Queens & Brooklyn).

The service option offered by the utility shall be reviewed by the Port Authority of New York & New Jersey for concurrence or for discussion of alternatives, as appropriate.

The fault current availability is critical for specifying the proper interrupting and withstand ratings of the service equipment. The utility will typically indicate the worst case numbers, which may be based on anticipated network upgrades and could be higher than estimates based upon current installations at other Port Authority of New York & New Jersey facilities.

When service characteristics are firmed up, obtain from the utility’s representative a list of current utility company-standard specifications that dictate what the customer is required to provide at a service substation. For example, Con Edison has a standard specification EO-2022 that describes the company’s requirements for high-tension service. Such requirements basically provide minimum design standards that must be met. Additional standards beyond the utility requirements are mentioned later in this document.

4.1.1 LOAD ANALYSIS/CALCULATIONS (SAMPLE LOAD LETTER)

Load calculations are necessary for properly sizing service equipment, as well as for communicating this information to the utility.

Preliminary demand load estimates may be based upon watts/sq.ft. for lighting, general power for different types of space utilization, and based upon similar design projects. Obtain load estimates from the Electronics, Mechanical and Civil Disciplines for new equipment including heating, ventilating, and air conditioning (HVAC), elevators, escalators, pumps, conveyors, and the like. Demand factors can vary widely for different types of facilities and should be determined individually for each project. In the absence of sufficient project design definition, the following factors may be applied to the connected loads.
A load letter to the utility or the Port Authority shall always show the connected kilovolt-ampere (KVA) or kilowatt (KW) for the different types of loads. Refer to the following example of load calculations, which could be an attachment to a load letter.

<table>
<thead>
<tr>
<th>Load Type</th>
<th>Demand Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighting (Offices)</td>
<td>100% @ 1.5 watts/sq.ft.</td>
</tr>
<tr>
<td>Receptacles (Offices)</td>
<td>60% @ 2 watts/sq.ft.</td>
</tr>
<tr>
<td>Elevators</td>
<td>See National Electric Code (NEC) Table 620.14</td>
</tr>
<tr>
<td>Baggage Conveyor Systems</td>
<td>80%</td>
</tr>
<tr>
<td>HVAC</td>
<td>70%</td>
</tr>
<tr>
<td>Electric Space Heating</td>
<td>100%. See NEC Article 220.51</td>
</tr>
</tbody>
</table>

Example of Load Calculations

In the load letter, include an estimate of future growth based upon discussion with the Facility Planners and/or the lead Engineering/Architectural Discipline, including time frames.

Typically, the utility will develop its own demand estimate based on its own experience, to determine the size of service equipment, such as transformers. However, the Port Authority of New York & New Jersey can ask for higher capacity collector bus and take-offs if the utility demand estimate is thought to be low.
4.1.2 **SWITCHGEARS SELECTION**

4.1.2.1 **HIGH-TENSION SERVICE SUBSTATION**

For 4.16 KV and higher, metal-clad switchgear as specified in PA Standard Specification 261326 shall be used. Specify ratings (e.g., 250, 350, 500, 1000, 1,500 MVA or 25kA, 40kA, 50kA, 63kA) that exceed the available fault current estimated by the utility.

Minimum protective relaying is dictated by the utility, depending upon whether the service is radial or parallel.

For radial service, include the following functional relays to trip the primary breaker:

- 50/51 (phase overcurrent) for each phase
- 50N/51N (ground overcurrent)
- Zero sequence voltage detection using 27(under voltage), 59 (overvoltage)
- 87T (differential) transformer

For parallel service, with two or more feeders paralleled on the secondary using delta-wye transformers, also include the following functional relays in addition to the relays for radial service:

- 67 (directional overcurrent)
- 32 (reverse power)
- 51(phase overcurrent) for transformer secondary breaker
- 51N (neutral overcurrent) for transformer neutral
- 87B (differential) bus

4.1.2.2 **RELAY PROTECTION 480 VOLT SPOT NETWORK SERVICE**

<<Under Development>>

4.1.3 **ELECTRICAL SPACES LAYOUT**

<<Under Development>>

4.1.4 **NETWORK PROTECTOR COMPARTMENTS, TRANSFORMER VAULTS, AND BUS ROOMS**

A. Roofs and floors shall be constructed of reinforced concrete with a minimum thickness of 6 inches. Exposed metal decking shall not be allowed in transformer vault and network protector compartment ceilings. The compartment or vault shall be designed as a waterproof structure if any part of it is external to the building. There shall be no penetrations through the ceiling of any kind.

B. Walls shall be constructed of 8-inch concrete block with voids filled with cement mortar. Two fire-rated (3-hour) steel doors shall be provided for each compartment or vault. One door shall open to a public corridor or lobby and shall be fire rated and accessible at all times. The other shall open to an adjacent compartment or vault or to the public corridor if there is only one compartment. Reinforcement bars shall clear all conduits into the compartment by at least 4 inches.

C. Building steel shall clear all conduit and bus openings by at least 8 inches in order to prevent induced heat build-up in the steel members. All steel shall be encased with a minimum of 2 inches of concrete. Nothing shall be installed above a network bus. No conduits, wires, pipes, ducts, etc. shall enter or pass through the vault or compartment that
are not specifically required for the operation of the vault. Mechanical equipment shall be
mounted outside the compartment, with wall louvers only. Mechanical ducts shall not be
used within the compartment, but if required, they shall be non-metallic.

D. Aspiration-type smoke detectors shall be provided for the compartment. The smoke
detection equipment shall be located outside of the compartment and only the aspiration
tube shall enter the compartment to allow maintenance to be performed without entering
the compartment.

E. Forced air ventilation shall be installed and maintained including controls and alarms. All
ventilation for transformer vaults shall be directly to outside air. Ventilation opening to
interior spaces shall have 3-hour fire-rated dampers.

F. Separation of network compartment from associated transformer vaults shall not exceed
25 feet.

G. Each network protector shall be installed in a separate compartment.

4.1.5 GROUNDING

A. Grounding at Substations shall conform to New York City Building Code (NYCBC) and

B. Grounding loop shall be provided around substation building or any structure with
maximum resistance 5 Ohm. Grounding loop shall be 500 kcmil copper cable.

C. Major equipment, such as switchgear, transformers, motor control centers, and control
panels shall have integral ground buses connected to the building ground grid at two
diagonally opposite locations.

D. Grounding calculations shall be submitted to the Port Authority for approval

E. Ground rods shall be copper bonded steel, ¾-inch diameter and 10 ft. long

F. Grounding test well shall be provided.

G. Ground cables shall be soft-drawn copper, class “B” stranding, and connected to the
ground rods by exothermic welds only.

H. Grounds from separate equipment shall individually terminate on a ground bus. They shall
not be connected together or daisy chained to the ground bus.

I. Electrical panelboards, motors, and other equipment shall be grounded utilizing an
insulated ground wire connected in accordance with the manufacturer’s recommendations.

J. All conduits shall contain an insulated ground wire bonded to all enclosures and sized in
accordance with the requirements from NEC or as shown on contract drawings.

K. All clamps, connectors, and other hardware used with the grounding system shall be made
of copper.

L. Ground-fault protection shall be provided for all receptacles and equipment, where required
by NEC and where located near sinks or running water.

4.2 POWER DISTRIBUTION SYSTEMS - LOW VOLTAGE

4.2.1 LOAD ANALYSIS/CALCULATIONS (SAMPLE LOAD LETTER)

A. Service and power distribution system shall be designed, as a minimum, for 1st
contingency or to match utility company contingency.
B. Load analysis shall be performed using connected load and demand factor in accordance with NEC Article 220. All load calculations shall be performed in KVA. Use a factor of 1.25 for continuous loads and a factor 1 for non-continuous loads. Allow a minimum of 25% spare capacity for future use.

C. For the load letter samples, see Appendix C.

D. Voltage drop calculations shall be performed for each feeder. Voltage drop should not exceed 2% from service switchgear/switchboard to the distribution panel and 3% from the distribution panel to each load.

E. The skin effects for alternating currents are negligible for conductors 500 thousand circular mil (kcmil) and less at 60 hertz (Hz). Therefore, the direct current resistance values can be used to calculate voltage drop.

F. Short circuit calculation shall be performed to determine required interrupting capacity of electrical equipment.

G. Coordination study shall be provided for system selectivity and circuit breakers (CBs) settings.

H. Arc flash hazard analysis shall be performed to determine the incident energy and PPE requirements.

4.2.2 Equipment Sizing

A. Electrical equipment shall be sized to support calculated load served by the equipment.

B. Electrical equipment shall be sized to withstand short circuit current calculated for this bus.

C. Electrical equipment shall be rated for required 480/277V or 208/120V, 3 phase, 4 wire.

D. Enclosures/cabinets for equipment located in interior heated areas shall be NEMA type 1.

E. Enclosures/cabinets for equipment located in unheated interior areas or interior areas subject to dust, oil, or dripping liquid shall be NEMA type 12.

F. Enclosures/cabinets for equipment located in exterior areas or in other areas that are subject to rain, dripping liquid, or hosing shall be NEMA type 4X, stainless steel.

4.2.3 Low Voltage Switchgears/Switchboards

All low-voltage switchgear shall be metal enclosed. The switchgear shall be built in accordance with American National Standards Institute/Institute of Electrical and Electronics Engineers (ANSI/IEEE) standards, shall have copper buses, and shall have as a minimum the following meters: volts, amperes (phase-to-phase and phase-to-neutral), frequency, ampere demand (one/phase and one average three phases), KW-hours, KW and KVA demand, power factor, harmonic load content and percent (total harmonic distortion [THD]), and be UL listed.

A. Locate in dedicated electrical rooms accessible only to qualified personnel.

B. All switchgears/switchboards shall be UL listed.

C. Front accessible where possible, except service entrance equipment.

D. For service entrance equipment, provide rear access when possible.

E. Copper main bus: 100% capacity full length.

F. Copper neutral bus, if required: 100% capacity full length.

G. Copper ground bus: full length.
H. Main and feeder CBs arranged for compression connectors.
I. All CBs shall be NEMA constructed.
J. All CBs shall have provisions for lockout/tagout (LOTO).
K. All CBs shall include electronic interchangeable trips with adjustable long time pick-up (LTPU), long time delay (LTD), short time pick-up (STPU), short time delay (STD), and instantaneous (INST) functions. When required, provide integral ground fault pick-up (GFPU) and ground fault detector (GFD) functions.
L. When ground fault is required, provide two level protections (main and feeders).
M. Provide service entrance label when required.
N. Provide minimum 20% spare capacity.
O. Provide minimum 1-spare CB of each frame size used (excluding main).
P. CBs less than 100 amps shall not be permitted on switchgears or switchboards.
Q. Specify provision for future bus extension and provide dedicated space for at least one future section.
R. Provide integral surge protection device (SPD) to meet requirements of National Fire Protection Association (NFPA) 780.
S. Where drawout CBs are specified, provide manufacturer’s overhead lifting device suitable for all CB sizes and locations.
T. Provide manufacturer’s test kit for all CB types and functions used.
U. Low-voltage substations shall be double ended with two main CBs and a tie CB. Substation shall be fed from two different sources.
V. Tie CB, main breakers and generator main breakers (if required) shall be electrically operated and controlled by a separately located transfer panel/mimic panel. The transfer panel shall have control power with an uninterruptible power supply (UPS) back up.
W. The transfer panel shall have a Mode Selector Switch (MSS) to select automatic or manual mode. Automatic operation of the breakers shall be open transition if fed from different substations and closed transition if fed from the same substation. Manual operation of the breakers may be open or closed transition. If closed transition is desired a second closed transition selector switch (CTSS) shall be provided.
X. Key interlocks, supplemented by mechanical interlocks, shall be provided for safety interlocking between the medium-voltage equipment and the 480V switchgear main breakers.
Y. Each main breaker shall be provided with metering equipment.
Z. All main and tie breakers shall be connected to SCADA for remote monitoring and control. See SCADA for design requirements.

4.2.4 TRANSFORMERS
A. Review the project load profile and select transformers to obtain peak loading between 60 to 80%.
B. All windings shall be copper, Aluminum windings are not acceptable.
C. Transformers shall be energy efficient type and meet DOE 2016 Efficiency.
D. A fused disconnect or CB is required on the secondary of a transformer when the secondary conductor length is more than 25 ft. to the panelboard.

E. Special consideration shall be given to locate transformers 112.5 KVA and above in a location where vibration will not be an issue. Also, avoid locating transformers where transformer-generated magnetic fields could interfere with TVs, monitors, or other sensitive electronics equipment.

F. Adequate ventilation/cooling shall be provided for transformers enclosed in closets installed indoors.

G. Transformers shall be self-cooled with steel enclosures.

H. Transformers larger than 112.5 KVA shall be designed for pad mounting only. Smaller transformers may be wall mounted or pad mounted.

I. All transformers located inside the building shall be dry type.

J. All transformers less than 500 KVA located outside the building shall be dry type.

K. All transformers 500 KVA and higher located outside the building shall be dry type or liquid filled. Less flammable, environmentally friendly liquids shall be utilized.

L. Dry type transformers shall be cast coil construction (primary and secondary).

M. Transformers installed outdoors shall have all openings designed to prevent rain and snow from getting inside.

N. Liquid field transformers shall not be located within 15 ft. from any building opening.

Where a high concentration (60% or more) of harmonics creating loads (PCs, laser printers, electronic ballasts, VSDs, UPSs, or other similar type equipment) relative to other non-harmonic loads is anticipated, the following shall be provided:

4.2.5 PANELBOARDS

Panelboards shall have a main CB, 100% neutral bus, ground bus, 42 poles, copper buses, bolt-on type line CBs, and be UL listed. Each panelboard shall contain at least 25% space for future circuits, single pole breakers shall not be ganged to form multipole breakers and “Series” rated equipment is not acceptable.

A. Panelboards shall be rated 208/120 volt or 480/277 volt, 3 phase, 4 wire.

B. Panelboards used for serving electronic loads shall be provided with double size neutral.

C. Panelboards shall be fully I.C. rated. Series rating of equipment is not acceptable. Minimum I.C. rating for 480v panel shall be 22,000 Amps, and for 208 volt panels 14,000 Amps.

D. Panelboard enclosures shall be galvanized steel or stainless steel.

E. Provide SPD for all panelboards.

F. Panelboards shall have minimum of 25% spare capacity for future use.

G. Interrupting capacity of the panelboard shall be determined by short circuit calculation.

H. Panelboards shall be equipped with a main CB. Main lug only panelboards are acceptable only if used as a subpanel located next to the equipment containing a CB supplying power to the panel.

I. Panelboards shall be equipped with bolt-on type molded case CBs only.

J. Panelboards shall be installed in electrical closets or electrical equipment rooms whenever possible.
K. Panelboards shall not be installed in user spaces if at all possible.

L. Panelboards shall be surface mounted. Flush mounted shall only be utilized in areas such as hallways or office spaces. When flush mounting a panelboard, provide spare conduits, skirting, and other provisions to aid future modifications.

M. Panelboards with greater than 14,000 amperes (A) available fault current shall be located in areas that are accessible only to qualified personnel.

N. Where a high concentration (60% or more) of harmonics creating loads (PCs, laser printers, electronic ballasts, VSDs, UPSs, or other similar type equipment) relative to other non-harmonic loads is anticipated, the following shall be provided:
 1. Full size individual branch circuit neutrals.
 2. 200% panelboard neutrals.

4.2.6 CIRCUIT BREAKERS AND FUSES

A. Interrupting capacity of CBs in switchgear or panelboards shall be suitable for the power system feeding them.

B. When specifying CBs and fuses, consider the existing electrical system as well as all the changes and additions to the system, so that the proper coordination of the overcurrent protection is developed throughout the entire electrical distribution.

C. When molded-case CBs with field adjustable trip settings are installed, the set points shall be set according to a coordination study.

D. Include make and model number of new CBs being specified for existing switchgear or panelboard.

E. Main CBs are to be sized according to NEC 450.3 (B) for any location. If a larger breaker is installed, then the appropriate trip plug must be installed.

4.2.7 MOTOR AND MOTOR CONTROL

A. Coordinate motor schedule and motor connections and required control with other trades.

B. All electric motors shall be supplied with equipment, apparatus, and/or appliances covered under non-Division 26 sections of the Port Authority of New York & New Jersey master specifications. The electrical trade shall set and connect all specified non-integral starting equipment, install all non-integral power conduits and wiring, and shall furnish and make all non-integral connections from starting equipment to motors as required to leave the apparatus in running condition.

C. Limiting the motor inrush current shall be investigated. Generally, 200 or 230 volt motors 25HP and over, and 460 volt motors 50 horse power (HP) and over need reduced voltage starting. Solid-state reduced voltage starters or variable frequency drives are typically recommended.

D. Provide a non-fused stand-alone motor disconnect (separate from starter) within sight of every motor.

E. Specify the use of a motor control center (MCC) if six or more starters are needed in the same room. Consider the motor control center’s main horizontal and vertical bus amperage, and the short circuit bracing. New MCCs shall be designed and specified to contain at least 20% spare size-one spaces.
F. MCCs shall have copper horizontal main bus with 100% capacity full length, minimum 600A, and a copper ground bus full length. Vertical buses shall be copper with 100% capacity full length, minimum 300A.

G. MCCs shall have copper neutral bus, if required, with 100% capacity full length.

H. Bus assemblies shall be braced to withstand a short circuit current not less than 25 KA symmetrical.

I. When necessary for the delayed loading of generators, on-delay relays shall be used in motor starters to sequence the restarting of large motors.

J. Locate indoors where possible; avoid outdoor locations.

K. Locate MCCs in dedicated electrical/mechanical rooms accessible only to qualified personnel.

L. Each section shall be dead-front and dead-back construction, front access only.

M. Provide future bus extension and dedicated space for at least one future section.

N. Starters shall be combination type with motor circuit protector, contactor and LOTO provisions, electronic overload protection devices, Hand-Off Auto selector switch, start and stop buttons, running and stopped LED push to test indicating lights and 2 normally open and two normally closed auxiliary contacts.

O. Variable frequency drives (VFDs) shall be installed when requested by the Mechanical Engineer.

P. A manual by-pass is not typically required on a VFD. A by-pass should only be specified after discussing the requirements with the Mechanical Engineer.

Q. Avoid using feeder CBs in MCCs. Instead, feed from a power panel.

R. Do not mount panelboards or associated transformers in MCCs.

S. MCC enclosures in heated indoor spaces with no dust, oil, or dripping liquids shall be NEMA type 12.

T. All motors ½ HP and above shall be rated three phase 460 Volts.

U. Individual combination motor starters installed outdoors shall have NEMA 4X stainless steel enclosure.

4.2.8 Electrical Spaces Layout

A. All electrical distribution equipment shall be located in a dedicated electrical room. No mechanical system is permitted in electrical room unless it serves this electrical room.

B. Switchgear, switchboards, and panelboard shall be located as required by NEC article 110.26. Working space shall be minimum as required by NEC.

C. Floor-mounted equipment shall be installed on a 3- to 6-inches high concrete maintenance pad. Pad shall extend out 6 inches from equipment edge on all sides.

D. Number of exit doors from electrical room shall comply with NEC requirements.

E. Doors to the electrical room shall be adequate size to bring electrical equipment in and out.

F. Clear passage shall be provided to exit doors and exit routes in case of equipment replacement.

G. Electrical closets shall have 2-duplex receptacles (one on an emergency power circuit and the other on a normal power circuit).
4.2.9 **Wire Types and Sizing: Indoor/Outdoor Distribution**

4.2.9.1 **Underground and Aerial, Indoor Distribution – General Purpose and Vertical Risers**

A. Minimum wire size shall be #12 American Wire Gauge (AWG) for power distribution and #14AWG for control.

B. Cables for outdoor distribution shall be triple-rated type USE-RHH-RHW.

C. Aerial installation is permitted for temporary installation only. Use messenger wire to support cables. Use multiconductor cable type thermoplastic high water-resistant, sunlight resistant, nylon coated (THWN).

D. For indoor general-purpose distribution use 75° cable type XLP high heat-resistant water-resistant (XHHW-2) for wet and dry locations. Use 90° cable type THHW in boiler and mechanical rooms.

E. For vertical risers use 75° cable type XHHW and support it as required by NEC or use special cable, which can be supported at longer vertical distance.

F. Use compression type splices only.

G. All wire and cable shall be installed in conduit. Low-voltage control or signal cables, except for fire alarm cables, may be installed without conduit above accessible ceilings if the cable meets NEC and UL listing requirements for the application.

 A. Fire alarm cable shall be certified per regional requirements (e.g. NYC Certified)

H. In areas where low-voltage or signal cables are to be run without conduit, air return plenum locations and plenum rated cables shall be used.

I. The use of multiwire branch circuits with a common neutral is not permitted.

J. Run equipment-grounding conductors, sized as per the NEC, with all power and control circuits over 50V.

K. Wiring methods under raised floors shall be specified. Short lengths of existing cable shall be replaced.

L. PVC conduits shall not be used within buildings. PVC conduits and PVC insulation for wiring other than that for communications systems or remote control, signaling, or power limited circuits shall not be used in the Lincoln, Holland and PATH tunnels.

M. No splices or joints shall be permitted in either feeders or branches except at outlets or accessible terminal, splice or junction boxes.

N. All wires shall be identified by circuits in all cabinets, boxes, wiring troughs and other enclosures, and at all terminal points, i.e., receptacle, etc.

4.2.10 **Raceway Types and Minimum Sizes**

4.2.10.1 **Exposed Indoor/Outdoor, Underground Ductbanks, Direct Buried**

A. All wiring will be installed in metallic or non-metallic (for outdoor use only) raceway systems.

B. Exposed indoor conduit shall be rigid galvanized steel, ¾-inch diameter minimum.

C. PVC-coated rigid galvanized metal conduit shall not be used indoors. Open garages are considered outdoor areas and shall utilize PVC-coated RGS conduits regardless of conduit size.
D. Rigid Galvanized Steel (RGS) conduit shall be used for all fire alarm system wires and cables.

E. All exposed conduits in or routed through mechanical equipment rooms (MERs) and electrical rooms shall be RGS.

F. Intermediate metal conduit (IMC) conduit shall not be used in wet locations or high-corrosive areas. Otherwise, NFPA 70 Article 342 fully applies. IMC is only acceptable in concealed locations.

G. Electrical metallic tubing (EMT) conduit shall not exceed 4 inches diameter, and shall only be utilized for control circuits and communications systems.

H. Connections to motors and building equipment that can be moved by hand for access and servicing shall be flexible metal conduit, no more than 18 inches long.

I. Exposed outdoor conduits shall be PVC-coated rigid galvanized metal, ¾-inch diameter minimum.

J. Conduits shall be independently supported; do not support conduits from ductwork. Vertical feeder conduits and bus duct shall be independently supported at each floor level.

K. Expansion fittings shall be installed in conduits crossing expansion joints.

L. Conduits in finished areas shall be concealed and those in unfinished areas shall be surface mounted.

M. Underground conduit/ductbanks shall utilize PVC Schedule 40 conduit 2-inch diameter minimum. Conduits shall be concrete encased a minimum of 3 inches all around. All ductbanks shall have 30-inch cover minimum. Utilize PA Electrical Standard Details for ductbank.

N. All 600V and less ductbanks and communication ductbanks shall utilize 4” PVC conduits, unless otherwise directed by the Port Authority. Minimum size of underground conduits for outdoor lighting and aeronautical lighting shall be 2” PVC.

O. Direct buried conduits are not permitted.

P. Ductbanks shall be designed with 25% spare conduits for future use. In small ductbank provide one spare conduit minimum.

Q. Ductbanks shall be sloped toward the manholes to provide adequate drainage; no low spots are allowed.

R. Ducts under vehicular roadways or other areas (parking lots, garages, etc.) where trucks or other heavy equipment travel shall be rigid steel.

S. Install spare conduit when just one conduit is to be installed underground.

T. Ductbanks shall not be installed within the footprint of a building and a building shall not be installed within the footprint of a ductbank or the duct bank shall be relocated.

U. Top entries of conduits into electrical enclosures located in areas subject to water or condensation shall not be permitted.

4.2.11 Manholes and Handholes

A. Manholes shall be provided, where required, so that cables may be installed without exceeding allowable pulling tension and cable sidewall pressure.

B. Manholes and handholes shall be designed to accommodate the number of cables, wires, and conduits required and have room for splicing those cables.
C. Maximum distance between manholes shall not exceed 450 ft.

D. Separate manholes and handholes shall be provided for 5KV power system, 600V power system and communication systems.

E. Conduits from manholes, handholes, or ductbanks into buildings or remote equipment locations shall be changed to RGS prior to emerging from below grade.

F. For manholes and handholes design see PA Electrical Standard Details.

G. Avoid installing manholes and handholes on roadways and taxiways. Handholes and manholes shall not be installed on runways and whenever possible shall be placed outside of the runway safety area.

H. Provide grounding for manholes, handholes, and covers.

I. Manholes shall not be installed within the footprint of a structure.

J. Manholes shall be provided with galvanized cable racks as required to properly support the quantity of cables to be installed within the manhole including all future cables. All cable racks shall be grounded. See PA Electrical Standard Details.

K. Construction over existing duct banks and manholes shall not be permitted. Existing duct banks that fall within the footprint of the structure shall be relocated prior to commencing construction. Verify that existing duct banks to be relocated do not have asbestos conduits.

4.3 POWER DISTRIBUTION SYSTEMS- MEDIUM VOLTAGE (5KV - 35KV SYSTEM)

4.3.1 LOAD ANALYSIS/CALCULATIONS (SAMPLE LOAD LETTER)

A. Service and power distribution system shall be designed as a minimum for 1st contingency or to match utility company contingency.

B. Load analysis shall be performed using connected load and demand and diversity factors. All load calculations shall be performed in KVA. Allow minimum of 25% spare capacity for future use.

C. For the load letter samples see Appendix D.

D. Voltage drop calculations shall be performed for each feeder. Voltage drop should not exceed 2% from service switchgear/switchboard to the distribution panel and 3% from the distribution panel to each load.

E. The skin effect for alternating currents are negligible for conductors 500 kcmil and less at 60Hz. Therefore the direct current resistance values can be used to calculate voltage drop.

F. Short circuit calculation shall be performed to determine required interrupting capacity of electrical equipment.

G. Provide coordination study for the distribution system.

H. Short circuit study shall be performed in SKM and copy of software file shall be provided to engineering in SKM format and PDF format. Minimum of 3 printed copies shall be submitted.

I. Arc flash hazard analysis shall be provided to assess incident energy levels and PPE requirements.
4.3.2 **EQUIPMENT SIZING**

A. Electrical equipment shall be sized to support calculated load served by the equipment.

B. Electrical equipment shall be sized to withstand short circuit current provided by utility company or calculated for this bus.

C. Basic impulse level (BIL) rating for the equipment shall comply with the utility requirements.

D. Electrical equipment shall be rated for required voltage.

E. Enclosures/cabinets for equipment located in interior heated areas shall be NEMA type 1.

F. Enclosures/cabinets for equipment located in unheated interior areas or interior areas subject to dust, oil, or dripping liquid shall be NEMA type 12.

G. Enclosures/cabinets for equipment located in exterior areas or in other areas that are subject to rain, dripping liquid, or hosing shall be NEMA type 4X, stainless steel.

4.3.3 **SWITCHGEARS (NON-UTILITY INTERCONNECTION)**

A. Primary selective switchgear shall be arranged with a mechanically interlocked tie switch to allow one feeder to supply the entire load in the event of one service failure.

B. Each service switch shall be equipped with a ground switch, arranged to ground the incoming feeder on line side of the switch. This switch shall be mechanically interlocked to prevent closing on energized feeder.

C. Provide Key interlock system for medium-voltage load interrupter switch, grounding switch, fuse compartment door, medium-voltage substation, and low-voltage main CB. Interlocking between the medium-voltage switch and the medium-voltage substation depends on the existing substation key interlock scheme.

D. Switchgear interrupting rating shall be 180 MVA for Public Service Electric and Gas (PSE&G) and 270 MVA for Con Edison (JFK and LGA Airports,).

E. Use vacuum CBs. Avoid using gas-filled CBs.

F. Provide CTs and PTs on each incoming feeder. Connect the PT(s) to the line side of the service switch and the CT(s) to the load side of the service switch. Connect their outputs to the metering equipment. Provide totalizer where required. Provide SCADA connections for remote monitoring. See SCADA for design requirements.

4.3.4 **ELECTRICAL SPACES LAYOUT**

A. All electrical distribution equipment shall be located in dedicated electrical room. No mechanical system permitted in electrical room unless it serves particular electrical room.

B. Switchgears shall be located as required by NEC article 110.34. Working space shall be minimum as required by NEC.

C. Floor-mounted equipment shall be installed on a 3- to 6-inch high concrete maintenance pad. Pad shall extend out 6 inches from equipment edge on all sides

D. Provide minimum of two exits from electrical substation room.

E. Doors to the electrical room shall be adequate size to bring or replace electrical equipment.

F. Clear pass shall be provided to the building exit door in case of equipment replacement.
4.3.5 **Vertical Distribution**

A. Cables for vertical distribution shall be supported per NEC. Splicing or pulling chambers shall be provided where vertical cable support is required.

B. Provide special engineered cable if distance between supports shall be greater than allowed by NEC.

C. For 5KV cables provide 3 hour rated chamber with 3 hour rated doors. See Design standards.

4.3.6 **Terminations and Splices**

A. Provide UL-listed termination kit or pothead for termination of the medium-voltage cables.

B. Provide UL-listed splice kit for splicing medium-voltage cables.

C. All splicing shall be located in the manhole or splicing chambers.

D. Each termination and splice shall be tested per Port Authority of New York & New Jersey specifications.

E. Only certified splicers with a minimum of two years' experience in medium voltage splicing shall perform splicing of cables. Qualifications shall be submitted for approval, prior to splicing.

4.3.7 **Cable Types and Sizing**

4.3.7.1 **Outdoor Distribution-Underground/Aerial, Indoor Distribution-General Purpose/Vertical Risers**

All conduit and wiring runs shall be identified on drawings in the following format: 3-1/c #10 & 1-1/c #12 G in 1".

All wires shall be identified by circuits in all cabinets, boxes, wiring troughs, and other enclosures and at all terminal points, i.e., receptacle, etc.

Minimum wire size shall be #12 AWG for power and lighting service.

Control wires shall be not smaller than #14 AWG unless otherwise permitted by equipment manufacture and proved through voltage drop calculations.

Wire sizes shall be increased to compensate for voltage drop as follows:

- 120V and 208V circuits longer than 70 ft. shall utilize minimum #10 AWG.
- 277V circuits longer than 100 ft. shall utilize minimum 10AWG.

Additional performance characteristics for wire and cables to be installed in subway areas, substations, tunnels: stringent flame retardancy, low smoke, low toxicity, good circuit integrity (per UL 2196) during a fire are required. All cables for these applications shall be a minimum #12 AWG and rated 90 C for wet and dry applications. Designations of these cables: XHHW-2 for indoor and USE-RHH-RHW-2 for outdoor installations.

A. Minimum wire size shall be 500KCmilk with minimum tap size #4/0AWG for medium-voltage power distribution

B. 5KV cables shall be flat strap type. Copper sheath type cables are not permitted.

C. Cables insulation shall be EPR 133 percent insulation level, FSC.

D. Aerial installation is not permitted.
E. For indoor general-purpose distribution and vertical risers use jacketed cable. Jacket shall be low-density-polyethylene (LDPE).

F. All cable shall be installed in conduit.

G. The use of multiconductor cable is permitted.

4.3.8 Raceways Types and Minimum Sizes

4.3.8.1 Exposed Indoor/Outdoor, Underground Ductbanks

A. Direct buried cables are not permitted

B. All underground conduits shall be concrete encased and installed as a ductbank. permitted

C. Provide 50% spare (empty) conduits if ductbank configuration is 3x2 or smaller. Provide 25% spare (empty) conduits for larger ductbanks. There shall never be less than two spare (empty) conduits in each ductbank.

D. When new ducts are required for primary power system (>600V), submit a set of calculations showing the maximum tension placed on the cables during pulling and the maximum allowable tension the cables can withstand. Calculate also, from a pressure standpoint, the force exerted in each elbow or bend during pulling and the radius of each bend. The minimum radius for electrical duct banks is 3 ft. Calculations shall be performed in both directions with resultants indicating either direction of pull is allowable.

E. Exposed indoor conduit for 5kV and higher, shall be rigid galvanized metal, 5-inch diameter minimum and shall be marked every 5 feet with a high voltage warning label. Exposed 5kV conduits are only permitted in areas that are restricted to qualified personnel.

F. Service conduits shall be concrete encased up to service switch enclosure.

G. Exposed outdoor conduits for 5kV and higher shall not be permitted.

H. Underground ductbanks shall utilize FRE conduit 5-inch diameter minimum. Conduits shall be concrete encased a minimum of 3 inches all around. If ductbank is installed under roadway, runway or taxiway, then RGS conduits and reinforced concrete shall be used. All ductbanks shall have 30-inch cover minimum.

I. Ductbanks shall be arranged to provide maximum heat dissipation to the earth. Provide heat calculations where more than one high current cable is to be located within the same ductbank.

J. Ductbanks of alternate feeders shall be separated by a minimum of 20 ft. and terminated in separate manholes.

K. Do not exceed 90° total bending radius between manholes or splicing chambers. Wide sweeps shall be utilized.

L. Dead ended duct banks shall be finished with reinforced concrete. See standard detail.

M. Ductbanks shall be sloped toward the manholes to provide adequate drainage; no low spots are allowed.

4.3.9 Pull Chambers and Splice Chambers

A. Pull chambers and splice chambers shall be provided inside the building for high-voltage distribution.

B. Size of the pull chambers and splice chambers shall be adequate to perform all required pulling and splicing.
C. Additional space near pull chambers for cable reel shall be provided.

4.3.10 **MANHOLES**

A. Manholes shall be provided, where required, so that cables may be installed without exceeding allowable pulling tension and cable sidewall pressure.

B. Manholes shall be designed to accommodate number and size of cables, wires, and conduits required and have room for splicing those cables.

C. Maximum distance between manholes shall not exceed 450 ft.

D. Conduits from manholes, handholes, or ductbanks into buildings or remote equipment locations shall be changed to RGS prior to emerging from below grade.

E. For manholes design see Appendix B - Electrical Standard Details.

F. Avoid installing on roadways and taxiways. Manholes shall not be installed on runways and whenever possible shall be placed outside of the runway safety area.

G. Provide grounding for manholes and covers.

H. Manholes shall not be installed within the footprint of a structure.

I. Construction over existing duct banks and manholes shall not be permitted. Existing duct banks that fall within the footprint of the structure shall be relocated prior to commencing construction. Verify that existing duct banks to be relocated do not have asbestos conduits.

4.4 **EMERGENCY POWER SYSTEMS**

4.4.1 **GENERATOR SYSTEMS**

4.4.1.1 **EMERGENCY GENERATOR**

The emergency generator(s) shall be rated for 100% non-varying continuous load (“Standby” and “Prime” rating is allowed) with a built-in load bank wired through a shunt-trip CB. Minimum Outdoor generators shall be in a sound-attenuated weatherproof enclosure for areas where general public can be disturbed. All enclosures shall be provided with adequate (as a minimum code mandated) working and clearance spaces with a panelboard connected to emergency power. Sound enclosure specifications shall be optimized with an ambient sound level survey to determine the best rating for the enclosure.

4.4.1.2 **AUTOMATIC TRANSFER SWITCH**

The ATS shall be four pole, the Port Authority, with override switches, UL 1008 listed, and shall have as a minimum the following meters: volts (phase-to-phase and phase to neutral), frequency, ampere demand (one/phase and one average three phase), and KVA demand. The requirement for a maintenance by-pass shall be reviewed with the facility and PA engineering

4.4.2 **BATTERIES**

A. The batteries shall be valve-regulated lead acid (VRLA), Lead Acid or Ni-Cd type.

B. Batteries shall be sized for DC loads in a substation. In general, there are four types of DC loads in a substation:

 1. Momentary Loads: These loads occur one or more times during the battery duty cycle and last for one minute or less. They occur as result from switchgear operation, motor-driven valves, isolating switches, field flashing of generators, and inrush currents.
2. Continuous Loads: These loads operate throughout the duty cycle of the battery continuously. The loads are relays, inverters, emergency lighting, energized coils, controls, and communication systems.

3. Non-Continuous Loads: These loads are either automatic or manually operated and powered during a certain portion of the battery duty cycle randomly at any time interval and may continuing operating to the end of duty cycle. These loads are motor driven valves, fire protection system actuators, and emergency lighting.

4. Future Loads: Generally load growth occurs in momentary loads. For this reason batteries are generally oversized in terms of ampere-hour.

C. While sizing the batteries, the ambient temperature and end-of-battery-life conditions must be taken into account. These, together with design conservatism, the batteries sizes are significantly larger. This leads to over sizing lead-acid substation batteries. The latest version of IEEE 485 and other applicable standards should be used for sizing the batteries for substations.

D. Provide battery sizing calculations.

4.4.3 UNINTERRUPTIBLE POWER SYSTEMS (UPS)

- UPS and their topologies.
- System configurations.
- Bypass source considerations.
- UPS AC load distribution coordination.
- Selection and sizing of batteries for UPS backup.

4.5 LIGHTING SYSTEMS

4.5.1 APPLICABLE CODES AND STANDARDS

A. IESNA - Illuminating Engineering Society of North America

1. RP-8-14: Roadway Lighting
2. RP-20-14: Lighting for Parking Facilities
3. RP-22-11: Tunnel Lighting
4. RP-33-14: Lighting for Exterior Environments
5. RP-37-15: Outdoor Lighting for Airport Environments
6. G-1-16: Security Lighting for People, Property & Infrastructure

B. Building Code of the City of New York

C. ANSI - American National Standards Institute

D. ASHRAE - American Society of Heating, Refrigeration & Air Conditioning Engineers

E. AASHTO – The American Association of State Highway Transportation Officials

F. ASTM - American Society for Testing Materials

G. NEC - National Electrical Code

H. NEMA - National Electrical Manufacturers' Association
I. NFPA - National Fire Alarm Protection Association
J. OSHA - Safety and Health Standards (29 CRF 1910) U.S. Department of Labor
K. UL - Underwriter's Laboratories, Inc.

4.5.2 LIGHTING TERMINOLOGY

A. The following terminology will be used throughout when referring to the different elements of lighting design criteria and lighting luminaires:

1. Color Rendering Index (CRI) - a measure of a light source's ability to show object colors realistically or naturally compared to a familiar reference source, either incandescent light or daylight.

2. Correlated Color Temperature (CCT) - specification of the color appearance of the light emitted by a lamp, relating its color to the color of light from a reference source. Measured in degrees Kelvin (K). The CCT rating for a lamp is a general "warmth" or "coolness" measure of its appearance.

3. Curfew – The IESNA gives recommendations for pre-curfew and post-curfew light levels to limit light trespass
 a. Pre-curfew from dusk until 11:00 p.m., when the area being illuminated is more likely to be in use.
 b. Post-curfew from 11:00 p.m. to 7:00 a.m.

4. Footcandles (fc) – Unit of measurement of amount of light (luminous flux over area)

5. Glare - Visual sensation caused by excessive or uncontrolled brightness.
 a. Discomfort glare - is the sensation of annoyance or even pain induced by overly bright sources.
 b. Disability glare - is the reduction in visibility caused by intense light sources in the field of view to the point where the task cannot be distinguished

6. Illuminance
 a. Illuminance is the amount of light that falls onto a surface. Illuminance is measured as the amount of lumens per unit area either in footcandles (lumens/ft²) or in lux (lumens/m²)
 1) Eavg: minimum maintained average illuminance
 2) Emax: maximum illuminance
 3) Emin: minimum illuminance
 b. Vertical illuminance is the amount of illuminance that lands on a vertical surface. For most exterior applications the required vertical illuminance levels are at 5'-0" above finished grade.

7. Light Pollution – a by-product of night time lighting. It includes effects such as sky glow, light trespass, and glare. Minimizing light pollution and wasted energy is achieved by lighting to appropriate levels of illumination, choosing efficient luminaires and lamps, and extinguishing lights when not needed.

8. Light Trespass – Unwanted light is cast onto adjacent property.

9. Luminaire – The light fixture assembly consisting of lamp, reflector, diffuser, ballast, wiring, housing and mounting apparatus.

10. Luminaire BUG Rating: Backlight, Uplight, Glare
11. Luminance - Luminance is the amount of light that reflects from a surface in the direction of the observer. It is often referred to as the “brightness” of the surface.
 a. Lavg: minimum maintained average luminance
 b. Lmin: minimum pavement luminance
 c. LVmax: maximum veiling luminance

12. Nighttime Outdoor Activity Level Definitions
 a. High – Areas with relatively high volume of pedestrians and/or vehicles during dark hours. Typically, areas with consistently high volumes or extreme swings of very high volume over short periods over time. Typical of large population centers.
 b. Medium - Areas with relatively moderate volume of pedestrians and/or vehicles during dark hours. Areas with consistent activity over extended periods over time. Typical of moderate to small population centers
 c. Low - Areas with relatively low volume of pedestrians and/or vehicles during dark hours. Areas with little activity over extended periods over time. Typical of suburban and rural population centers.

13. Nighttime Outdoor Lighting Zone Definitions
 a. LZ4 – High Ambient Lighting
 1.) Areas of human activity where residents and users are adapted to high light levels.
 2.) Lighting is generally considered necessary for safety, security and convenience.
 3.) Lighting is mostly uniform and continuous.
 4.) After curfew lighting may be extinguished or reduced in areas as activity levels decline.
 b. LZ3 – Moderately High Ambient Lighting
 1.) Areas of human activity where residents and users are adapted to moderately high light levels.
 2.) Lighting is generally desired for safety, security and convenience.
 3.) Lighting is mostly uniform and continuous.
 4.) After curfew lighting may be extinguished or reduced in areas as activity levels decline.
 c. LZ2 – Moderate Ambient Lighting
 1.) Areas of human activity where residents and users are adapted to moderate light levels.
 2.) Lighting may be used for safety, security and convenience.
 3.) Lighting is not necessarily uniform or continuous.
 4.) After curfew lighting may be extinguished or reduced in areas as activity levels decline.
 d. LZ1 – Low Ambient Lighting
 1.) Areas where lighting may adversely affect flora and fauna or disturb the character of the area.
2.) Areas where human residents and users are adapted to low light levels.

3.) Lighting may be used for safety and convenience.

4.) Lighting is not necessarily uniform or continuous.

5.) After curfew most lighting should be extinguished or reduced in areas as activity levels decline.

e. LZ0 – No Ambient Lighting

1.) Areas where lighting will seriously and adversely affect the natural environment.

2.) Impacts include disturbing biological cycles of flora and fauna and/or detracting from human enjoyment and appreciation of natural environment.

3.) Human activity is subordinate in importance to nature.

4.) The vision of residents and users is adapted to darkness.

5.) When not needed, lighting should be extinguished.

14. Veiling Luminance

a. Luminance which reduces contrast.

b. Produced by bright sources or areas in the visual field that results in decreased visual performance and visibility.

4.5.3 Exterior Lighting Design

A. The purpose of exterior lighting is to permit the use of outdoor space for productivity and enjoyment. Appropriate lighting provides comfort as well as a sense of security. Efficient lighting design conserves energy to the greatest extent possible as well as minimizes adverse visual impacts including glare and obtrusive light. Responsible lighting design helps protect natural environment from adverse effects of artificial lighting and helps preserve the night sky for astronomy and enjoyment.

B. Night time tasks, such as driving automobiles, have very specific lighting requirements so people can perform these tasks safely. More light is not always better for these purposes. Adaption effects have significant safety implications. Low level light adaption effects both safety and comfort. Total dark adaption takes about 30 minutes whereas light adaption takes happens quickly, usually in less than a minute. Once eyes have adapted to low light levels they are very sensitive to white light and will lose their low level adaption almost immediately.

C. Transitions between areas of very different levels of illumination will cause a temporary loss of visual acuity. Smoother transitions minimizes adaption effects and permits better vision. If color perception is necessary for a night time task, it is important to provide enough illuminance for the task.

D. IES Guidelines indicate that calculated levels of illumination that differ by more than 10% of target values should be addressed. If illumination is 5% below recommended level than a significant percentage of users may find it not acceptable. If illumination exceeds recommendation by more than 10% then potential over-lighting and energy misuse.

E. One of the most important ongoing outdoor lighting issues that the lighting designer must be concerned with is unwanted light in the night time environment. Lighting pollution, light trespass, glare and sky glow have become a significant issues. Unnecessary, unwanted or wasted light degrades the nighttime luminous environment and negatively impacts
humans and other species. Use of cut-off luminaires and well shielded light sources should be considered to reduce contribution to these conditions.

4.5.4 Light Fixture Selection Criteria

A. Certification: All luminaires should be UL rated or ETL rated.

B. Photometric Performance: Luminaires shall be selected to provide the required level of illumination as well as appropriate visual comfort. All luminaires shall be provided with an independent test lab report in an IES format file.

C. Durability: All luminaires should be durable and suitably rated for the environment where they are intended to be installed. Luminaires near waterways should be provided with marine grade finish.

D. Operations Cost: Luminaires should be selected to provide the appropriate photometric performance with the highest efficacy to minimize operating costs.

E. Ingress Protection (IP) Rating. All luminaires shall have the appropriate IP Rating for protection against water and/or dust infiltration for the intended area of installation.

F. BUG Ratings: All luminaires shall be selected to provide illumination where intended and limit light trespass and unwanted light form adjacent areas:

1. Backlight to be avoided with appropriate reflector design and, if necessary, accessory shields. Backlight is light distribution into adjacent areas or property that is not intended to be illuminated.

2. Uplight to be avoided with appropriate housing and reflector design. Provide full cut-off where possible. Uplight causes artificial skyglow.

3. Glare to be minimized through reflector and diffuse design and appropriate light output for identified tasks. Glare is uncontrolled brightness; it can be classified as discomforting or disabling.
4.5.5 Exterior Lighting Levels

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>PANYNJ AVG. Foot Candles</th>
<th>PANYNJ Vertical Foot Candles</th>
<th>Uniformity Lavg:Emin</th>
<th>Justification of Lighting Level Increase at PANYNJ Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROADWAYS<sup>4</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expressway</td>
<td>2</td>
<td>1</td>
<td>3:1</td>
<td>• High traffic volumes
• Distracted motorists</td>
</tr>
<tr>
<td>Collector</td>
<td>3</td>
<td>1.5</td>
<td>3:1</td>
<td>• High traffic volumes
• Distracted motorists</td>
</tr>
<tr>
<td>Intersection</td>
<td>3</td>
<td>1</td>
<td>4:1</td>
<td>• High traffic volumes
• Distracted motorists
• High pedestrian traffic</td>
</tr>
<tr>
<td>ELEVATED ROADWAY<sup>4</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roadway</td>
<td>3</td>
<td>1.5</td>
<td>3:1</td>
<td>• Potential icing
• Potential high winds</td>
</tr>
<tr>
<td>Approach</td>
<td>3</td>
<td>1</td>
<td>3:1</td>
<td>• Curvature impacts visibility</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>PANYNJ AVG. Lavg cd/m<sup>2</sup></th>
<th>AVG Uniformity Ratio Lavg:Lmin</th>
<th>MAX Uniformity Ratio Lavg:Lmin</th>
<th>MAX Veiling Luminance Ratio Lavg:Lmin</th>
<th>Justification of Lighting Level Increase at PANYNJ Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRPORT ROADWAYS<sup>4</sup> (Luminance)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expressway (Approach to Airport from major highway)</td>
<td>1.2</td>
<td>3</td>
<td>5</td>
<td>0.3</td>
<td>• High traffic volumes
• Distracted motorists</td>
</tr>
<tr>
<td>Collector (Connecting roads not intended for long distance travel)</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>0.4</td>
<td>• High traffic volumes
• Distracted motorists</td>
</tr>
<tr>
<td>Local Roads (Surrounding buildings)</td>
<td>0.8</td>
<td>6</td>
<td>10</td>
<td>0.4</td>
<td>• High traffic volumes
• Distracted motorists
• High pedestrian traffic</td>
</tr>
<tr>
<td>LOCATION</td>
<td>PANYNJ AVG. Foot Candles<sup>1</sup></td>
<td>PANYNJ Vertical Foot Candles<sup>2</sup></td>
<td>Uniformity (Eavg: Emin)</td>
<td>Justification of Lighting Level Increase at PANYNJ Facilities</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>AIRPORT DROP-OFF/PICK-UP AREAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curbside Baggage Check</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covered Area</td>
<td>4</td>
<td>2</td>
<td>4 : 1</td>
<td>High Pedestrian traffic, Distracted Pedestrians, Distracted motorists, Sense of security</td>
<td></td>
</tr>
<tr>
<td>Uncovered Area</td>
<td>5</td>
<td>2</td>
<td>4 : 1</td>
<td>High Pedestrian traffic, Distracted Pedestrians, Distracted motorists, Sense of security</td>
<td></td>
</tr>
<tr>
<td>Walkways from Airport to Parking Areas</td>
<td>5</td>
<td>1</td>
<td>4 : 1</td>
<td>High Pedestrian traffic, Distracted pedestrians, Assist with wayfinding, Sense of security</td>
<td></td>
</tr>
<tr>
<td>LOCATION</td>
<td>PANYNJ AVG. Foot Candles<sup>1</sup></td>
<td>PANYNJ Vertical Foot Candles<sup>2</sup></td>
<td>Uniformity Eavg:Emin</td>
<td>Justification of Lighting Level Increase at PANYNJ Facilities</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>---------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>BUS TERMINAL ROADWAYS<sup>4</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roadway</td>
<td>3</td>
<td>1</td>
<td>3 : 1</td>
<td>• High traffic volume</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• High Pedestrian traffic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Distracted Pedestrians</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Distracted motorists</td>
<td></td>
</tr>
<tr>
<td>Covered Area</td>
<td>4</td>
<td>2</td>
<td>4 : 1</td>
<td>• High Pedestrian traffic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Distracted Pedestrians</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Distracted motorists</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Sense of security</td>
<td></td>
</tr>
<tr>
<td>Uncovered Area</td>
<td>5</td>
<td>2</td>
<td>4 : 1</td>
<td>• High Pedestrian traffic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Distracted Pedestrians</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Distracted motorists</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Sense of security</td>
<td></td>
</tr>
<tr>
<td>Boarding Area</td>
<td>15</td>
<td>3</td>
<td>4 : 1</td>
<td>• Document confirmation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Facial recognition</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Sense of security</td>
<td></td>
</tr>
<tr>
<td>Pedestrian Transaction Area</td>
<td>5</td>
<td>3</td>
<td>5 : 1</td>
<td>• High pedestrian traffic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Distracted pedestrians</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Sense of security</td>
<td></td>
</tr>
<tr>
<td>Pedestrian Transaction Counter</td>
<td>30</td>
<td>5</td>
<td>3 : 1</td>
<td>• Document confirmation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Facial recognition</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Sense of security</td>
<td></td>
</tr>
<tr>
<td>Transaction Machines</td>
<td>--</td>
<td>3</td>
<td>--</td>
<td>• Minimum vertical illuminance over entire face of pay machine</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Lighting should not obscure reading task on screens or windows.</td>
<td></td>
</tr>
<tr>
<td>LOCATION</td>
<td>PANYNJ AVG. Foot Candles 1</td>
<td>PANYNJ Vertical Foot Candles 2</td>
<td>Uniformity Eavg:Emin</td>
<td>Justification of Lighting Level Increase at PANYNJ Facilities</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>----------------------------------</td>
<td>----------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Drive Aisles / Parking Areas</td>
<td>4</td>
<td>2</td>
<td>15 : 1</td>
<td>• High traffic volume</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• High Pedestrian traffic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Distracted Pedestrians</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Distracted motorists</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Assist with wayfinding</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Improve color recognition</td>
<td></td>
</tr>
<tr>
<td>Transaction Areas</td>
<td>5</td>
<td>2</td>
<td>15 : 1</td>
<td>• Sense of security</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Minimum vertical illuminance over entire face of pay machine</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Lighting should not obscure reading task on screens or windows</td>
<td></td>
</tr>
<tr>
<td>Parking Payment Machines</td>
<td>--</td>
<td>3</td>
<td>--</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>PANYNJ AVG. Foot Candles 1</th>
<th>PANYNJ Vertical Foot Candles 2</th>
<th>Uniformity Eavg:Emin</th>
<th>Justification of Lighting Level Increase at PANYNJ Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Aisles / Parking Areas</td>
<td>4</td>
<td>2</td>
<td>10 : 1</td>
<td>• High traffic volume</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• High Pedestrian traffic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Distracted Pedestrians</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Distracted motorists</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Assist with wayfinding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Improve color recognition</td>
</tr>
<tr>
<td>Ramps / Corners / Turns</td>
<td>5</td>
<td>2</td>
<td>10 : 1</td>
<td>• High traffic volume</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Distracted motorists</td>
</tr>
<tr>
<td>Vehicle Entry and Exit Daytime</td>
<td>50</td>
<td>25</td>
<td>10 : 1</td>
<td>• Transition zone to or from Daylight</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• High traffic volume</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Distracted motorists</td>
</tr>
<tr>
<td>Vehicle Entry and Exit Night Time</td>
<td>4</td>
<td>2</td>
<td>10 : 1</td>
<td>• High traffic volume</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Distracted motorists</td>
</tr>
<tr>
<td>Drop-Off / Pick-up Areas</td>
<td>4</td>
<td>2</td>
<td>10 : 1</td>
<td>• High traffic volume</td>
</tr>
</tbody>
</table>
LOCATION

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>PANYNJ AVG. Foot Candles(^1)</th>
<th>PANYNJ Vertical Foot Candles(^2)</th>
<th>Uniformity Eavg:Emin</th>
<th>Justification of Lighting Level Increase at PANYNJ Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valet Areas</td>
<td></td>
<td></td>
<td></td>
<td>• High Pedestrian traffic
• Distracted Pedestrians
• Distracted motorists
• Sense of security</td>
</tr>
<tr>
<td>Vehicle Transaction Area</td>
<td>4</td>
<td>2</td>
<td>10:1</td>
<td>• Sense of security
• Assist with wayfinding</td>
</tr>
<tr>
<td>Pedestrian Transaction Area</td>
<td>5</td>
<td>3</td>
<td>10:1</td>
<td>• Document confirmation
• Facial recognition
• Sense of security</td>
</tr>
<tr>
<td>Patron Transaction Counter</td>
<td>30</td>
<td>5</td>
<td>3:1</td>
<td>• Document confirmation
• Facial recognition
• Sense of security</td>
</tr>
<tr>
<td>Transaction Machines</td>
<td>--</td>
<td>3</td>
<td>--</td>
<td>• Minimum vertical illuminance over entire face of pay machine
• Lighting should not obscure reading task on screens or windows.</td>
</tr>
<tr>
<td>Pedestrian Stairs</td>
<td>5</td>
<td>2.5</td>
<td>5:1</td>
<td>• Sense of security
• Assist in Wayfinding</td>
</tr>
<tr>
<td>Roof Deck</td>
<td></td>
<td></td>
<td></td>
<td>• Same as Parking Lot</td>
</tr>
</tbody>
</table>
Location Details

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>PANYNJ AVG. Foot Candles(^1)</th>
<th>PANYNJ Vertical Foot Candles(^2)</th>
<th>Uniformity Eavg:Emin</th>
<th>Justification of Lighting Level Increase at PANYNJ Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOLL PLAZA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach and Departure Zones</td>
<td>5</td>
<td>2</td>
<td>4:1</td>
<td>• High traffic volume</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Change in vehicle speed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Change in lane widths</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Distracted motorists</td>
</tr>
<tr>
<td>Toll Collector Island 6</td>
<td>5</td>
<td>2</td>
<td>3:1</td>
<td>• Identify objects and obstructions</td>
</tr>
<tr>
<td>Toll Collector Area 7</td>
<td>30</td>
<td>5</td>
<td>3:1</td>
<td>• Document confirmation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Facial recognition</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Sense of security</td>
</tr>
<tr>
<td>Walkways</td>
<td>--</td>
<td>10</td>
<td>3:1</td>
<td>• Pedestrian Toll Collector safety</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Sense of security</td>
</tr>
<tr>
<td>BRIDGES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roadway 4</td>
<td>3</td>
<td>1.5</td>
<td>3:1</td>
<td>• Potential icing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Potential high winds</td>
</tr>
<tr>
<td>Approach</td>
<td>3</td>
<td>1.5</td>
<td>3:1</td>
<td>• Curvature impacts visibility</td>
</tr>
<tr>
<td>TUNNELS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>REFER TO RP-22-11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LOCATION

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>PANYNJ AVG. Foot Candles</th>
<th>PANYNJ Vertical Foot Candles</th>
<th>Uniformity Eavg:Emin</th>
<th>Justification of Lighting Level Increase at PANYNJ Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNDERPASS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Roadway | 3 | 1.5 | 3:1 | • High traffic volume
 | | | | • Change in vehicle speed
 | | | | • Change in lane widths
 | | | | • Distracted motorists |
| Pedestrian (Daytime) | 10 | 5 | 3:1 | • Sense of security
 | | | | • Assist in wayfinding
 | | | | • Facial recognition |
| Pedestrian (Nighttime) | 4 | 2 | 3:1 | • Sense of security
 | | | | • Assist in wayfinding
 | | | | • Facial recognition |
| **PEDESTRIAN / CYCLIST PATHWAY** | | | | |
| Near Roadways | 4 | 1.5 | 4:1 | • Sense of security
 | | | | • Assist in wayfinding
 | | | | • Facial recognition |
| Away from Roadways | 2 | 0.7 | 4:1 | • Sense of security
 | | | | • Assist in wayfinding
 | | | | • Facial recognition |
| **PATH PLATFORM** | | | | |
| Platforms | 15 | 3 | 3:1 | • High pedestrian traffic
 | | | | • Safety & security
 | | | | • Distracted pedestrians|
| Platform Seating | 15 | 5 | 3:1 | • Provide light levels consistent with adjust platform
 | | | | |
| Platform & Car Threshold | 15 | 3 | 2:1 | • High pedestrian traffic
 | | | | • Safety & security
 | | | | • Distracted pedestrians|
| Open Stairs & Escalators | 20 | 7 | 2:1 | • High pedestrian traffic
 | | | | • Safety & security
 | | | | • Assist in wayfinding |
| Turnstiles | 20 | 7 | 4:1 | • High pedestrian traffic
 | | | | • Safety & security
<pre><code> | | | | • Distracted pedestrians|
 | | | | • Assist in wayfinding |
</code></pre>
<table>
<thead>
<tr>
<th>LOCATION</th>
<th>PANYNJ AVG. Foot Candles</th>
<th>PANYNJ Vertical Foot Candles</th>
<th>Uniformity Eavg:Emin</th>
<th>Justification of Lighting Level Increase at PANYNJ Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAILWAY CROSSING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| roadway4 | 3 | 1.5 | 3:1 | • Safety & security for motorists
• Improve recognition of track locations |
| Supplement on Train8 | -- | 1 | 5:1 | • Safety & security for motorists
• Improve recognition of train cars from greater travel distance. |
| RAILWAY YARD | | | | |
| Yard Body | 2 | 1 | 10:1 | • Safety for workers
• Identify objects and obstructions |
| Control Tower Area | 5 | 10 | 5:1 | • Improved visibility for security monitoring |
| Hump Area9 | 5 | 5 | 5:1 | • Safety for workers
• Identify objects and obstructions |
| Switch Points | 5 | 5 | 10:1 | • Safety for workers
• Identify objects and obstructions |
| Sides of cars | -- | 5 | 5:1 | • Safety for workers
• Identify objects and obstructions |
<table>
<thead>
<tr>
<th>LOCATION</th>
<th>PANYNJ AVG. Foot Candles<sup>1</sup></th>
<th>PANYNJ Vertical Foot Candles<sup>2</sup></th>
<th>Uniformity Eavg:Emin</th>
<th>Justification of Lighting Level Increase at PANYNJ Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTAINER YARD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>10</td>
<td>1.5</td>
<td>5 : 1</td>
<td>• Safety for workers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Identify objects and obstructions</td>
</tr>
<tr>
<td>Slipway</td>
<td>15</td>
<td>10</td>
<td>5 : 1</td>
<td>• Safety for workers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Assist in wayfinding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Improve color recognition</td>
</tr>
<tr>
<td>Gangways</td>
<td>5</td>
<td>1.5</td>
<td>3 : 1</td>
<td>• Safety & Security</td>
</tr>
<tr>
<td>Loading Areas</td>
<td>10</td>
<td>5</td>
<td>4 : 1</td>
<td>• Safety for workers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Identify objects and obstructions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Improve color recognition</td>
</tr>
<tr>
<td>Catwalks</td>
<td>5</td>
<td>1</td>
<td>10 : 1</td>
<td>• Safety & Security</td>
</tr>
<tr>
<td>Stairs and platforms</td>
<td>10</td>
<td>3</td>
<td>5 : 1</td>
<td>• Safety for workers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Identify objects and obstructions</td>
</tr>
<tr>
<td>Storage Area Active</td>
<td>10</td>
<td>2</td>
<td>5 : 1</td>
<td>• Safety for workers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Identify objects and obstructions</td>
</tr>
<tr>
<td>Storage Area Inactive</td>
<td>3</td>
<td>0.5</td>
<td>10 : 1</td>
<td>• Safety for workers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Identify objects and obstructions</td>
</tr>
<tr>
<td>SECURITY LIGHTING / GUARD POST ENTRY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access Control Points (Search Area)</td>
<td>10</td>
<td>5</td>
<td>3 : 1</td>
<td>• Document confirmation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Facial recognition</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Safety & Security</td>
</tr>
<tr>
<td>Access Control Zone (General Area)</td>
<td>5</td>
<td>3</td>
<td>4 : 1</td>
<td>• Document confirmation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Facial recognition</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Safety & Security</td>
</tr>
</tbody>
</table>
DE-ICING FACILITY

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>PANYNJ AVG. Foot Candles</th>
<th>PANYNJ Vertical Foot Candles</th>
<th>Uniformity Eavg:Emin</th>
<th>Justification of Lighting Level Increase at PANYNJ Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft De-Icing</td>
<td>10</td>
<td>10</td>
<td>4:1</td>
<td>• Safety for workers • Assist in wayfinding • Improve recognition of materials on surfaces</td>
</tr>
<tr>
<td>Pump Area</td>
<td>10</td>
<td>10</td>
<td>5:1</td>
<td>• Safety for workers • Identify objects and obstructions</td>
</tr>
<tr>
<td>Tank Truck Loading Point</td>
<td>15</td>
<td>7</td>
<td>5:1</td>
<td>• Safety for workers • Identify objects and obstructions</td>
</tr>
<tr>
<td>General Control Area</td>
<td>15</td>
<td>15</td>
<td>5:1</td>
<td>• Improved visibility for security monitoring</td>
</tr>
<tr>
<td>Control Panel</td>
<td>20</td>
<td>20</td>
<td>5:1</td>
<td></td>
</tr>
</tbody>
</table>

ILLUMINATED SIGNS

<table>
<thead>
<tr>
<th>Location</th>
<th>Ambient Light Level</th>
<th>Sign Luminance (^{10})</th>
<th>PANYNJ Vertical FC</th>
<th>Uniformity</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Externally Illuminated Signs</td>
<td>Low</td>
<td>22 – 44 CD/M²</td>
<td>10 – 20</td>
<td>2 : 1</td>
<td>• Assist with legibility • High traffic volume • Distracted motorists</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>44 – 89 CD/M²</td>
<td>20 – 40</td>
<td>2 : 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>89 – 175 CD/M²</td>
<td>40 – 80</td>
<td>2 : 1</td>
<td></td>
</tr>
<tr>
<td>Internally Illuminated Signs</td>
<td>Low</td>
<td>240 CD/M²</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>520 CD/M²</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>1000 CD/M²</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>
LIGHT TRESPASS

<table>
<thead>
<tr>
<th>Maximum Vertical Illuminance at Property Line</th>
<th>Pre-Curfew Vertical FC(^3)</th>
<th>Pre-Curfew Vertical FC(^3)</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LZ4</td>
<td>1.5 MAX</td>
<td>0.6 MAX</td>
<td>• Limit unwanted light on adjacent property</td>
</tr>
<tr>
<td>LZ3</td>
<td>0.8 MAX</td>
<td>0.3 MAX</td>
<td></td>
</tr>
<tr>
<td>LZ2</td>
<td>0.3 MAX</td>
<td>0.1 MAX</td>
<td></td>
</tr>
<tr>
<td>LZ1</td>
<td>0.1 MAX</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LZ0</td>
<td>0.01 MAX</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

FOOTNOTES:

1. Horizontal footcandles at grade
2. Vertical footcandles at 5 ft above finished grade
3. Horizontal Luminance (cd/m\(^2\)) at grade
4. Assume Pavement R2/R3 (Mixed or Slightly Specular)
5. Refer to Section 4.5.6-G. 6
6. Refer to Section 4.5.6-H. 2
7. Refer to Section 4.5.6-H. 3
8. Supplement on trains: Vertical plane at center of track from grade up to 13 ft above grade
9. Refer to Section 4.5.6-O. 4
10. Based on dark background with white letter reflectance value of 70%
4.5.6 EXTERIOR LIGHTING DESIGN CONSIDERATIONS

A. ROADWAYS

1. An important consideration for roadway lighting design is supporting the motorists’ visual task. The ability to adequately see the road ahead and observe traffic or pedestrians and avoid conflicts is integral to the driving task. Lighting significantly improves the visibility of the roadway, increases sight distance, and makes roadside obstacles more noticeable to the driver, and therefore more avoidable.

2. Appropriate roadway lighting contributes to traffic safety as well as a sense of security for pedestrians, bicyclists, and transit users as they travel along and across roadways. Shadows or high contrast reduce visibility and personal security, and walking, bicycling or ancillary roadway activities may become uncomfortable or unsafe. Making certain that the lighting system provides minimum acceptable levels of illumination is important to all users of a roadway environment.

3. Roadway pavement luminance ratios are critical and are a combined result of the pavement material selection and the lighting system design. The calculation of pavement luminance requires information about the directional surface reflectance characteristics of the pavement.

4. Most common pavement groups can be classified into a limited number of Road Surface Classifications.
 a. R1: Mostly Diffuse
 b. R2: Mixed (Diffuse and Specular)
 c. R3: Slightly Specular
 d. R4: Mostly Specular.

5. Sight distance is the length of roadway that is visible to the driver. The available sight distance on a roadway should be sufficient to enable a vehicle traveling at or a near the design speed to stop before reaching a stationary object in its path.

6. Luminance is the amount of light that reflects from a surface in the direction of the observer. It is often referred to as the “brightness” of the surface or “apparent brightness” it is a more complete metric than illuminance because it takes into account the amount of light that reaches a surface as well how much of that light is reflected towards the driver.

7. Vertical illuminance is the appropriate measurement for determining the amount of light landing on pedestrians.

B. ELEVATED ROADWAYS

1. Elevated roadways and overpasses are visual extensions of the roadway but the roadbed is constructed on a structural deck. Road surfaces may be slippery or freeze before the roadway leading to the overpass.

2. High winds and vibration due to vehicle traffic is a concern and can be an issue for lamp and equipment life.

3. It is good practice to limit pole heights and use equipment that can withstand vibration.
C. AIRPORT ROADWAYS

1. The roadways surrounding an airport require careful selection and placement of light luminaires to prevent ground lights from causing interference with pilot approaches as well as Air Traffic Controllers. Uncontrolled light from fixture back light and glare cause reflectance off ground surfaces. Uplight creates skyglow and potential glare.

2. Control Tower Issues
 a. Air traffic controllers are responsible for safety and movement of terminal air traffic.
 b. Height restrictions should be taken into consideration when designing outdoor lighting layouts so that luminaires do not protrude into the controllers' line of sight.
 c. The tower controllers vision should not be impaired by glare, reflected light from paved surfaces and direct high angle luminaires.
 d. Light luminaires selected should have well designed optical systems with low B-U-G Ratings: Backlighting should be minimized; Uplight should zero with no light emitted above 90 degrees; Glare should be controlled with the majority light emitted at low angles.

4. The roadways leading into an airport may be considered Expressways - a highway designed for fast traffic, with controlled entrance and exit, a dividing strip between the traffic in opposite directions, and typically two or more lanes in each direction.

3. Many of the roadways within an airport may be considered Collectors – roadways servicing traffic between major and local roadways and used for traffic movement within an area but do not handle long through trips.

4. Illuminance for Vehicle-Pedestrian Intersections:
 a. The IESNA Recommends that all Airport Pedestrian Intersections be considered High Pedestrian Conflict Areas.

D. AIRPORT DROP-OFF/PICK-UP AREAS

1. Departure and arrival areas are classified as High Pedestrian Conflict Areas with significant numbers of pedestrians expected to be on the sidewalks or crossing the read/street during darkness.

2. Nighttime outdoor lighting zone should be considered LZ4 – High Ambient Lighting.

3. It is important to provide visibility for the driver as well as pedestrians, in order to create a reasonably safe environment.

4. Vertical surfaces such as buildings and structures, as well as pedestrians, should also be illuminated in order to create a bright environment.

5. Glare from luminaires should be restricted by paying careful attention to fixture mounting height, light output and distribution.

E. BUS TERMINAL ROADWAY

1. Some of the roadways around a Bus terminal may be considered Collectors – roadways servicing traffic between major and local roadways and used for traffic movement within an area but do not handle long through trips.

2. Most of the roadways around a Bus Terminal would be consider local roads, surrounding buildings and facilities. Frequent stopping and interruption.

3. All Pedestrian Intersections be considered High Pedestrian Conflict Areas.
4. Drop-Off/Pick-Up Areas
 a. Departure and arrival areas are classified as High Pedestrian Conflict Areas with significant numbers of pedestrians expected to be on the sidewalks or crossing the read/street during darkness.
 b. Nighttime outdoor lighting zone should be considered LZ4 – High Ambient Lighting.
 c. It is important to provide visibility for the driver as well as pedestrians, in order to create a reasonably safe environment.
 d. Vertical surfaces such as buildings and structures, as well as pedestrians, should also be illuminated in order to create a bright environment.
 e. Glare from luminaires should be restricted by paying careful attention to fixture mounting height, light output and distribution.

F. PARKING LOT
 1. It is important to provide visibility for the driver as well as pedestrians, in order to create a reasonably safe environment.
 2. Parking areas should be classified as High Pedestrian Conflict Areas with significant numbers of pedestrians expected.
 3. Nighttime outdoor lighting zone should be considered LZ4 – High Ambient Lighting.
 4. Glare from luminaires should be restricted by paying careful attention to fixture mounting height, light output and distribution.

G. PARKING GARAGE
 1. It is important to provide visibility for the driver as well as pedestrians, in order to create a reasonably safe environment.
 2. Parking areas should be classified as High Pedestrian Conflict Areas with significant numbers of pedestrians expected.
 3. Nighttime outdoor lighting zone should be considered LZ4 – High Ambient Lighting.
 4. Glare from luminaires should be restricted by paying careful attention to fixture mounting height, light output and distribution.
 5. Lighting should assist in orientation and wayfinding.
 6. Covered parking garages require daytime transition lighting at entry and exits due to contrast from daylight. This helps to ease the motorist visual adaption.
 7. Roof Deck Lighting Criteria to be same as Parking Lot.

H. TOLL PLAZA
 1. Approach and Departure Zones:
 a. The approach zone of a toll plaza is the area in advance of the toll plaza and includes a transition area and a queue zone:
 1.) The transition area where the pavement widens from main roadway to the width of the plaza toll lanes.
 2.) The queue zone, with no taper, before the front edge of the toll islands
 b. This area is most critical area for drivers due to lighting level changes and proximity to collection booths.
Electrical – Details, Notes, and Custom Specifications

c. This area should provide a comfortable transition from the ramp or roadway to the collection island.

2. Toll Collection Island:
 a. The toll collector island consists of the vehicle queue area, the toll island slab/canopy area and the departure zone.
 b. This area requires increased illumination due to varying tasks.
 c. The toll collector canopy protects against weather but also provides locations to mount light luminaires to provide the required levels of illumination. The canopy also provides mounting locations for signage and the visibility of the signage needs to be considered.

3. Toll Collection Area:
 a. The toll collection area consists of the toll collection booth and the task area where money is collected (or deposited in automatic collector)
 b. The toll collection booth requires multiple visual tasks:
 1.) Interior illumination for the attendant to function inside the booth.
 2.) Ability to see money received from the driver.
 c. Ability to see and identify vehicles approaching the collection area. Walkways:
 d. Walkways around the toll collection island are critical. They are used by the toll attendants to move between booths.
 e. Due to congestion and obstructions the driver may not readily see a pedestrian.
 f. Appropriate vertical illumination should be provided for walkways:

4. Infield
 a. The infield is the common name given to the unpaved open areas within and around the plaza. They provide clear lines of sight for motorists to assess traffic conditions.
 b. In some instances there are buildings or storage facilities located here. There are also parking areas located in these spaces.
 c. Lighting for these areas is provided for security purposes and especially pedestrian safety.

I. BRIDGE ROADWAY
 1. Most bridge roadways could be considered Expressways - a highway designed for fast traffic, with controlled entrance and exit, a dividing strip between the traffic in opposite directions, and typically two or more lanes in each direction.
 2. Roadbeds can freeze before the lead in roadway.
 3. There is a transition zone for access ramps to bridge roadway.

J. TUNNEL
 1. Refer to IES RP-22-11

K. UNDERPASS
 1. A structure is considered to be an underpass when the length and physical configuration of the structure substantially limit the driver’s ability to see objects ahead.
2. Underpasses are often shared by roadways and pedestrian/bike pathways. Providing uniformity and vertical illumination is essential for visual acuity and safety.

3. No supplemental daytime lighting is required for underpasses or structures less than 80 ft in length.

4. Vibration due to vehicle traffic is a concern and can be an issue for lamp and equipment life.

L. PEDESTRIAN/CYCLIST PATHWAY

1. Pathways can accommodate walking, jogging, rollerblades, cycling, etc. Lighting to provide sense of security and allow for safe movement of individuals on the pathways. Areas of shadow and sharp contrast should be avoided.

2. Vertical illumination is important to identify others at a distance as well as gauge movement.

3. Changes of elevations, stairs and ramps to be taken in to account in locating luminaires.

4. If adjacent to roadways may not need separate lighting system.

M. PATH PLATFORM

1. It is important to provide good visibility in order to create a reasonably safe environment for a high pedestrian volume area.

2. Lighting to provide sense of security and allow for safe movement of individuals on the platforms. Areas of shadow and sharp contrast should be avoided.

3. Vertical illumination is important to identify others at a distance as well as gauge movement.

4. Uniform illumination and vertical illumination should be provided at platform edge for safety during train arrival and departure.

5. Vertical surfaces of building and structures should be illuminated in order to create a bright environment.

6. Changes of elevations, stairs, escalators and ramps to be taken in to account in locating luminaires.

7. Lighting should assist in orientation and wayfinding

N. RAILWAY CROSSING

1. Appropriate lighting required to prevent accidents during night time train operations and assist motorist in identifying train tracks and traffic control devices at night.

2. Moving trains block the crossing at night. Provide supplemental light to provide vertical illumination on sides of train cars.

3. Illuminate the conflict area on each side of the crossing to 30 meters in each direction

4. Lighting at and adjacent to crossings may supplement traffic control devices. Locate poles to limit glare for drivers and pedestrians. Full cut off luminaires recommended.
5. Supplemental vertical illuminance on train cars (centerline of track).

Railroad Grade Crossings

![Diagram of Railroad Grade Crossings](image)

Min of 10 lux vertical illumination on railroad cars

“Seven Years into Illumination at Railroad Highway Crossings” by Dick Mather; Signal Crossing Specialist with the Oregon Public Utility Commission

Railroad Right-of-Way

O. RAILWAY YARD

1. High concentration of train rails and train cars require appropriate lighting for safe and secure operation. It provides workers with a safe environment to perform their duties safely, effectively and comfortably.

2. Lighting systems should provide uniform illumination over large areas, allowing for accurate color rendering, and with minimal glare so that workers can easily and safely discern their surroundings.

3. Placement of luminaires to be considered for areas of higher activity such as switch points.

4. Placement of luminaires to be considered for changes of elevations such as hump areas.

5. Lighting system must be able to withstand the harsh conditions of a wet marine environment, including high winds, heavy rains, corrosive salt fog, and extreme temperatures.

P. CONTAINER YARD

1. Proximity to waterfront and use of industrial equipment require appropriate lighting for safe and secure operation. It provides workers with a safe environment to perform their duties safely, effectively and comfortably.

2. Lighting systems should provide uniform illumination over large areas, allowing for accurate color rendering, and with minimal glare so that workers can easily and safely discern their surroundings.

3. Lighting system must be able to withstand the harsh conditions of a wet marine environment, including high winds, heavy rains, corrosive salt fog, and extreme temperatures.
Q. SAFETY AND SECURITY / GUARD POST ENTRY

1. Providing a sense of safety and security are critical functions for exterior lighting. Proper levels of illumination are required to identify hazards or obstructions. Low glare light luminaires allow for better visual adaptation.

2. Safety and security lighting also involves perception and the application of higher light levels is not always appropriate; the quality of light - not quantity - is relevant. Implementing layers of light, such as minimal amounts of ambient light with highlighting, helps to create appropriate contrast and sense of distance and scale.

3. Appropriate amounts of vertical illumination reduce silhouette and shadow for easier identification of objects and especially faces. Vertical illumination assists in observation and identification.

4. Light fixture selection and locations should not interfere with security camera operation.

R. DE-ICING FACILITY

1. Sufficient lighting is required to allow crew to evaluate night time de-icing prevent treatment of wings and flaps.

2. Lighting should be adequate for visual inspection of all aircraft surfaces.

3. Appropriate lighting required to prevent accidents during night-time operations. Multiple vehicles will be in operation and application if de-icing fluid may create steam and limit visibility.

4. Lighting systems should provide uniform illumination over large areas, allowing for accurate color rendering, and with minimal glare so that workers can easily and safely discern their surroundings

5. De-icing fluids may have adverse effects on the materials used to construct the lighting system and taken into account when selecting luminaires and mounting devices.

S. ILLUMINATED SIGNS

1. Signage will be viewed by motorists travelling at a high rate of speed and needs to be identified quickly and easily legible

2. Amount of illumination on signage, reflectance of the signage surface and brightness of surrounding area contribute to legibility

3. Placement of luminaires should not create glare which obscures the signage for motorists.

T. LIGHT TRESPASS

1. Light trespass is a result of unwanted or intrusive light in the nighttime. This results in glare, obtrusive light and skyglow.

2. When the level of the ambient light causes visual discomfort or loss of visibility, it is called glare.

3. Skyglow results from light that is unnecessarily directed upward and is scattered by the atmosphere, rather than being focused directly on the target area.

4. Obtrusive light is light that is distributed where it is not wanted or needed. It is also commonly referred to as spill light, which is light that falls outside the boundaries of the property on which the lighting installation is located.

5. Light trespass is visually disabling and aesthetically unappealing. It also wastes costly energy. The complaints arising from it are wide ranging, from issues of aesthetics to concerns about safety, health, and conserving energy resources.
4.5.7 **Exterior Lighting Controls**

All permanently installed exterior lighting shall have automatic controls capable of turning off exterior lighting when either sufficient daylight is available or the lighting is not required during nighttime hours.

Lighting not designated for dusk-to-dawn shall be controlled by a time switch.

Either a photo sensor or astronomical time switch shall control dusk-to-dawn lighting.

A. **Exceptions**

1. Lighting in parking garages, tunnels, and large covered areas that require lumination during daylight hours.
2. Lighting for steps or stairs that require lumination during daylight hours.
3. Lighting that is controlled by a motion sensor and photoelectric switch.
4. Lighting for facilities that have equal lighting requirements at all hours and are designed to operate continuously (such requirements shall be demonstrated to the satisfaction of the inspecting authority).

4.5.8 **Interior Lighting**

4.5.8.1 **Interior Lighting Levels**

Interior Light Levels for PA Transportation Facilities

<table>
<thead>
<tr>
<th>Area</th>
<th>Luminance</th>
<th>Uniformity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger waiting room</td>
<td>20</td>
<td>3:1</td>
<td>Provide 8 to 12 vFC at walls (except full-height fenestration)</td>
</tr>
<tr>
<td>Facility circulation/queueing</td>
<td>10 to 15</td>
<td>4:1</td>
<td></td>
</tr>
<tr>
<td>Enclosed circulation (corridors, vestibules)</td>
<td>10 to 15</td>
<td>3:1</td>
<td>Provide 8 to 12 vFC at walls</td>
</tr>
<tr>
<td>Vertical circulation elements</td>
<td>20</td>
<td>6:1</td>
<td>Measured horizontal at each tread (stairs and escalators) and within elevator cab</td>
</tr>
<tr>
<td>Facility ticketing</td>
<td>15 to 25</td>
<td>3:1</td>
<td>Provide for 15 to 20 vFC at telephones and TVMs</td>
</tr>
<tr>
<td>Bus roadway</td>
<td>3 to 5</td>
<td>4:1</td>
<td></td>
</tr>
<tr>
<td>Boarding area</td>
<td>10 to 15</td>
<td>4:1</td>
<td></td>
</tr>
<tr>
<td>Offices</td>
<td>30 to 40</td>
<td>6:1</td>
<td>At task</td>
</tr>
<tr>
<td>Janitor closets/storage</td>
<td>20</td>
<td>6:1</td>
<td></td>
</tr>
<tr>
<td>Electrical & mechanical rooms</td>
<td>20</td>
<td>6:1</td>
<td>20 to 30 vFC on face of equipment</td>
</tr>
</tbody>
</table>

* Foot Candles
** Average to Minimum

All lighting levels listed in the table are average, maintained values. All light levels are horizontal (h) unless noted as vertical (v). All vertical luminance values assume the use of wall washing or similar design approaches and are given as average, maintained utilizing an average-to-minimum ratio of 10:1. All horizontal luminance levels (unless otherwise noted) are to be measured at the floor.
4.5.9 Lighting Calculation Requirements

1. Luminance and Uniformity Criteria Achievement

Lighting calculations for both normal and emergency lighting shall be submitted. Analyses shall be computer generated and inclusive of photometric data for all luminaires utilized. Calculations shall show lumination levels attained in foot candles. Analyses must consider all engineering data, such as coefficient of utilization (CU) and light loss factors (LLFs).

Computer-generated lighting calculation analyses for all typical public and select, typical non-public areas should at minimum display the following information:

a. Fixture location in context with facility architecture.

b. Horizontal average luminance (typically, maintained); calculation points to be located on 2-ft. centers or less for interior spaces; on 10-ft. centers for exterior areas.

c. Vertical surface average luminance where required by criteria.

d. Average-to-minimum and maximum-to-minimum ratios (uniformity).

e. Derivation of LLFs used.

f. Statistical data regarding types of luminaires used.

g. Statistical data regarding type of lamps and lumen output.

h. Independent laboratory photometric test data for each fixture type, including lumen distribution curve.

i. Part plan design drawings for all calculation areas and sections/elevations showing relative location of luminaires and associated components.

2. Lumenaire Characteristics

All luminaires must be UL listed, specification-grade, and furnished complete with all required mounting hardware. Standardization of lamps, luminaires, and system components is essential to ensure suitability for a wide range of applications and to enable cost-effective procurement and inventory simplicity. It is recommended that all expendable lighting elements (lamps, ballasts, lampholders, etc.) be standard products and limited in total quantity to facilitate procurement and competitive pricing.

Luminaires, whether part of an integrated system or stand-alone, must be durable and suitable for a minimum 30-year life cycle. This standard of durability shall include the ability for luminaires and components to withstand vibration, moisture, and vandalism.

Luminaires must be selected on the basis of appropriate performance, appearance, and cost-effectiveness. Selection characteristics include:

- Adaptability and appearance
- Total luminaire efficiency
- Commonality of lamping
- Ease of maintenance (e.g., tool-less access for common tasks such as relamping)
- Adherence to a reasonable standard of durability
- Consideration for maintenance is important for all facility spaces and can determine, in large measure, typical luminaire location parameters.
• Lighting components must be located so that they can be feasibly maintained. Lighting equipment located over VCEs and other open areas should not be located directly overhead, unless they are very long life (5 to 10 years average rated life) or unless specific maintenance strategies are identified for these areas.

• A minimum mounting height of not less than 8 ft. 6 inches (in.) above finish floor (AFF) should be maintained in all public areas. In all cases luminaires may not be located lower than 80 in. AFF.

• Public area luminaires located below 7 ft. AFF must comply with ADAAG requirements and must be vandal-resistant.

• Under no circumstances should cooled air pass directly over unlensed, bare linear fluorescent sources. It will cause lamp discoloration and reduced lumen output.

• In office areas, recessed fluorescent luminaires compliant with the applicable caveats of IESNA RP-1-04 should be provided.

4.6 Life Safety & Security Systems

4.6.1 Fire Detection and Alarm Systems

These guidelines cover fire detection and alarm systems; they do not cover HVAC requirements for smoke venting or purging that are included in the Mechanical section.

A. The fire alarm system shall comply with the latest applicable provisions of the national, state, and local codes and their amendments to the National Fire Alarm Code (NFPA 72) and Port Authority of New York & New Jersey technical specifications.

B. The fire alarm system shall be a voice evacuation system and have fully addressable, intelligent, four-wire system, with digital communication, and peer-to-peer communications between fire alarm panels and between their associated devices.

C. The fire alarm system shall consist of class "A" Style "7" Signaling Line Circuits, Class "A" Style "Z" Notification Appliance Circuits, and Class "A" Style "D" Initiating Device Circuits.

D. Upon completion of the project the entire fire alarm system and each major component such as zones, loops, circuits, panel components, power supplies, etc. shall have a minimum of 20% spare capacity.

E. All fire alarm wiring shall be installed in rigid metal conduits. Installation of plenum rated wire above hang ceiling is not permitted. All fire alarm conduits in non-finished areas and concealed conduits shall be painted fire alarm red. Fire alarm enclosures (pull boxes, junction boxes, and mounting boxes) shall also be painted fire alarm red.

F. In New York City, all fire alarm conduits in non-finished areas and concealed conduits shall be painted fire alarm red.

G. Field wiring for initiation and/or notification circuits or loops shall be installed in dedicated conduits, pull box or enclosure.

H. Consult the facility for the type of emergency voice/alarm communications:

1. One-Way Voice (Public Address) Communications System: One-way voice/alarm (Public Address) shall be dual-channel, permitting the transmission of an evacuation signal to one or more zones and simultaneous manual voice paging to other zones, selectively and in any combination.
2. Two-Way (Firemen's Telephone) Communications System: Survivability requirements for this system shall be in accordance with NFPA 72. (An acceptable way to meet this is to have widely separated dual risers and to feed approximately half the speakers on each floor from each riser.) The fireman's telephone system, if provided, shall indicate the location of each phone station in use and shall permit selective calling and party line operation.

I. All equipment supplied must be specifically listed for the purpose for which it is used and installed in accordance with any manufacturer’s instructions included in its listing.

J. The system shall have multiple access levels so authorized personnel can disable individual alarm inputs or normal system responses (outputs) for alarms, without changing the system's executive programming or affecting operation of the rest of the system.

K. The fire alarm control panel (FACP) shall be located for convenient, rapid access. When not located in a public or normally occupied area, a remote annunciator (RA) with audible-visible trouble indication is required. (Consult with the Facility Manager prior to locating the FACP and any RA or printer.)

L. The FACP and all other control equipment locations, including any transponders, subpanels, and booster power supplies, must be protected by a spot-type smoke detector located within 15 ft. of the equipment (measured horizontally).

M. Smoke control system fans (pressurization or exhaust), or smoke purge fans, shall be provided with hand-auto-off switch(es) in or adjacent to FACP or RA. They must be clearly labeled, and fire alarm system-monitored or provided with status indicator lights. (In New York City provide a New York City Fire Department key.)

N. The FA printer shall be powered from a FA 120 volts alternating current (VAC) panel circuit.

O. The graphic FA annunciator shall have a minimum of one screen per horizontal floor and one vertical screen. The graphics shall be based on the latest edition of AutoCAD used by the Port Authority of New York & New Jersey.

P. The speaker/strobes shall comply with the latest NFPA and Americans with Disabilities Act (ADA) requirements and shall be installed such that the no area is without coverage.

Q. Smoke detectors shall not be installed where the following conditions exist: vehicle exhaust, nearby cooking, ambient temperatures in non-conditioned spaces, or very high humidity. Heat detectors should include the rate-of-rise feature.

R. Each FA system with automatic fire detection, or which monitors a sprinkler system, shall be equipped with a 4-channel (minimum) digital alarm communicator transmitter (DACT) for transmission of fire alarm, supervisory, and trouble signals to a central station, remote supervising station, or proprietary supervising station. For buildings where full-time on-site staffing assures response, an area bell and high-power strobe light could be an effective means of signaling alarm.

S. Spot-type smoke detectors shall not be used where ceiling height exceeds 25 ft. because it makes access for maintenance very difficult and could impede response.

T. A detector installed where accidental damage (mechanical equipment rooms [MERs]) or deliberate abuse is expected shall be provided with a guard that is listed for use with it.

U. All air duct or plenum detectors must have a remote alarm indicator lamp.

V. The initiating device loops shall be limited to 30 devices.

W. There shall be no splices in the system other than at device terminal blocks or on terminal blocks in cabinets.
X. Permanent wire markers shall be used to identify all connections at the FACP and other control equipment, at power supplies, and in terminal cabinets.

Y. Signaling line circuits shall be wired with type FPL/FPLR/FPLP fire alarm cable, AWG 18 minimum (unless manufacturer's installation instructions unequivocally require, or state preference for, the use of unshielded cable for the system), low-capacitance, twisted shielded copper pair. Cable shield drain wires are to be connected at each device on the loop to maintain continuity, taped to insulate from ground, and terminated at the FACP. In underground conduit, use Type TC or PLTC cable (PE insulated) to avoid problems from moisture.

Z. Interface modules (used for all contact type initiating devices) must be located in a conditioned environment that does not exceed listing test parameters, to prevent failures due to temperature/humidity extremes.

AA. Notification appliance circuit booster (NACB) power supplies must be individually monitored for integrity and are not permitted to be located above a ceiling or in non-conditioned space. NACBs shall be located in a conditioned environment that does not exceed listing test parameters (77°F for batteries) and shall must be protected by a spot-type smoke detector located within 15 ft. (measured horizontally) of the NACB.

BB. All junction boxes shall be painted red prior to pulling the wire. Those installed in finished areas are permitted to be painted outside to match the finish color.

CC. All connections to the FACP and the system's programming shall be done only by the manufacturer or by an authorized distributor that stocks a full complement of spare parts for the system. The technicians who do this are required to be trained and individually certified by the manufacturer, for the FACP model/series being installed. This training and certification must have occurred within the most recent 24 months.

DD. All fire alarm signals shall be transmitted to a central station monitoring system by approved methods. Facility-specific requirements must be included in signal transmission.

EE. Existing fire alarm systems must be made compatible with central station alarm monitoring systems. New or altered fire alarm systems must be fully addressable and compatible with the central station monitoring system.

FF. Any additions, alterations, replacements, or new installations of any fire detection, suppression, or signaling system at an existing Port Authority of New York & New Jersey facility shall require the complete fire alarm system to conform to the latest edition of the municipal Building and Fire Codes.

GG. Tenant fire alarm systems serving the areas outside of the Port Authority of New York & New Jersey responsibility shall be interconnected with the Port Authority of New York & New Jersey base building or facility-wide fire protection system.

HH. Tenant fire alarm systems shall be designed to control all systems and equipment installed by the tenant and shall be fully integrated into the building or complex fire protection system to support HVAC, smoke purge, and life safety fire response procedures.

II. The fire alarm system annunciation and communication between the Port Authority of New York & New Jersey and the tenant fire alarm system shall satisfy the following requirements:

1. The tenant fire alarm panel shall be of the same manufacturer as the Port Authority of New York & New Jersey base building fire alarm system or shall be an approved equal that is fully compatible.
2. The tenant shall engage the Port Authority of New York & New Jersey fire alarm system maintenance contractor to furnish and install the interface connection to the Port Authority of New York & New Jersey fire alarm system.

3. The Port Authority of New York & New Jersey fire alarm system maintenance contractor shall be responsible for coordination his/her work with the Port Authority of New York & New Jersey facility tenant liaison office.

4. The tenant shall provide all conduit, wiring, and interconnections.

5. The tenant fire alarm system shall transmit all addressable points to the Port Authority of New York & New Jersey fire alarm system in order to provide the complete status of all alarms, supervisory, and trouble signals.

6. The audible and visual devices in the tenant’s leasehold shall be fully integrated with the Port Authority of New York & New Jersey base building system and work in conjunction with Port Authority of New York & New Jersey audible and visual devices so that all devices in a fire zone are activated simultaneously.

JJ. The tenant fire alarm system shall be fully addressable and comply with all requirements for installation as identified by applicable codes and standards. A fully addressable fire alarm system shall be able to clearly identify the type of alarm, the location of origin, and the status of the system and device.

KK. The tenant fire alarm system must be compatible with and able to extend the Port Authority of New York & New Jersey base building voice evacuation system.

LL. Bus Terminal Tenant Fire Alarm System Requirements:

All fire alarm cables shall be New York City-approved, shielded, twisted pair #14 AWG, solid copper, 200-degree C, 600V, except control circuits shall be unshielded.

1. Tenant Alarm Fire System
 a. General
 1.) The design of tenant fire alarm system shall comply with the Building Code of the City of New York and the Electrical Code of the City of New York, and shall be compatible with the existing base building bus terminal fire alarm system.
 - The tenant fire alarm system shall utilize both automatic and manual initiating (detection) devices and audible and visual notification (signaling) appliances:
 - Systems shall utilize either conventional or multiplex technologies. The use of addressable/intelligent systems is required.
 - In cases where microprocessor software programmable systems are utilized, a fully functional and manufacturer’s licensed copy of the software program, manuals, and accessories shall be provided to the Port Authority of New York & New Jersey as part of the system.
 - In all cases, the occupants of the facility shall be able to clearly hear and, as required, clearly see the system alarm signal(s).
 - All system components (detectors, signals, modules, etc.) shall be UL listed and cross listed for use with the system control panel.
 2.) Power to the smoke detection and fire alarm equipment shall be taken via fused cutouts connected to the line terminals of the nearest emergency electrical panel.
b. The tenant fire alarm system shall be fully compatible with the existing base building bus terminal system.

2. HVAC Smoke Detectors
 a. The tenant shall provide smoke detectors in the HVAC systems that UL listed and approved by the New York City Building Department of the particular application. Detectors shall sense products of combustion. Detectors shall not be subject to an alarm due to the rapid change of humidity.
 b. Duct detectors shall be fully compatible with the tenant fire alarm system.

3. Area Smoke Detectors
 a. The tenant shall provide smoke detector over each leasehold entrance to the public corridor.
 b. The area detector shall be fully compatible with the tenant fire alarm system.

4. Local Control Panel and Emergency Power Supply
 a. The local control panel shall be duly compatible with the base building bus terminal fire alarm system.
 b. Emergency power supply for local control panel shall have a back-up battery supply system of ample capacity and approved by the Port Authority of New York & New Jersey.
 c. The local control panel shall be wired with provisions for tie-in with the building's fire alarm system. Tenant shall provide conduit and wire to the nearest point of connection to the building fire alarm system. Terminations to the building fire alarm system shall be performed by the Port Authority of New York & New Jersey.
 d. All tenant-required sprinkler alarms shall be wired to compatible addressable device adapter modules.

5. Emergency Smoke Purge Manual Pull Station
 a. The tenant shall install a manual pull station with break glass rod, provided with an engraved nameplate with the legend "EMERGENCY SMOKE PURGE." The pull station shall be fully compatible with the tenant fire alarm system.
 b. For Smoke Purge Activation, see the Mechanical Design Guidelines. (4)

6. Sprinkler Alarms
 Sprinkler alarms have been provided by the Port Authority of New York & New Jersey. However, should the tenant require his/her own internal alarm, he/she must conform to the paragraph titled, Local Control Panel and Emergency Panel Supply.

4.6.2 EMERGENCY POWER

These guidelines cover emergency power supply for building services; they do not cover specialty requirements such as computer network or electro-medical health equipment requirements.

Note: All buildings shall have an emergency power system separated from normal building power. Having the entire building on generator power does not satisfy code-mandated emergency power systems.

A. Emergency power system may consist of storage battery systems, lighting unit equipment, or generators and shall provide a minimum of 6 hours or more if required by code requirements and/or regulations.
B. Installations of the stationary engine/generator and emergency power system shall be designed in strict accordance with local codes that amend ANSI/NFPA 70 - National Electrical Code, NFPA 37 - Stationary Combustion Engines and Gas Turbines and NFPA 110 - Emergency and Standby Power Systems. Products incorporated into the emergency power system shall be UL listed and labeled and factory mutual (FM) approved.

C. Emergency power system shall be sized for the total of the following:
 1. Existing emergency peak (demand) load.
 2. All known future and proposed projects.
 3. All current code-mandated emergency loads that are currently grandfathered.
 4. 40% spare capacity greater than the above items 1 & 2 (items \[1, 2, & 3 \times 1.4\]).

D. The size of the emergency power system equipment shall be adjusted (per manufacturers recommendations) for increased THD content (UPS systems, fire pump VFDs, electronic ballasts, computer equipment, elevator drives) and voltage sags in excess of installed solid-state drive parameters.

E. For extra reliability it is preferable to install two, or more, emergency generators with paralleling switchgear in lieu of one large size generator.

F. The following loads shall be used for sizing and selecting the emergency electrical power system equipment:
 - Emergency lighting systems.
 - Alarm systems.
 - Fire extinguishing systems.
 - Code mandated life safety systems.
 - Elevators.
 - Code-mandated ventilating and smoke control systems.
 - Fire pumps.
 - Communication systems.
 - Other facility-warranted systems (electric eye-operated systems).
 - Water pipe heat tracing for life safety systems (sprinkler, standpipes, etc.).

G. Emergency power system for buildings shall be rated 480 volts unless otherwise required by the facility.

H. Assess the need for additional emergency power redundancy through portable, truck-mounted generators and outdoor power receptacles.

I. Preferably the engine/generator supplier shall supply the main ATS. The ATS shall be an open-transition and utilize by-pass isolation for any ATS-rated 600 amperes or larger.

4.6.3 **SMOKE CONTROL AND PURGE**

These guidelines cover electrical power systems; they do not cover mechanical requirements, which include control functions.

Note: For code-mandated smoke control and purge systems the fire alarm system monitors all inputs, processes the smoke control logic, and then operates fans and dampers through relays that capture the device controllers. This means the fire system is in control. The fire alarm system communicates fire events and conditions to the building automation system.
A. Smoke control systems are broken into two major categories: Dedicated and non-dedicated systems. Dedicated systems are simply those that do not perform any other function. The fans and dampers are not used for everyday ventilation, only for smoke control events. They often are found in stairwells and elevator shafts. Typically these areas are pressurized to prevent the spread of smoke through exit passageways in the building. In atria, these are typically used for smoke exhaust, in order to control the smoke layer. Non-dedicated systems are those that provide HVAC in the building every day but are captured by the smoke control system in the event of a fire.

B. Code-mandated smoke control is part of the building fire alarm system. The system smoke purge panel (firefighters’ smoke control station) is on the fire alarm peer-to-peer communication system. The layout and devices (switches, lights, and manual overrides buttons) on the smoke purge panel are the responsibility of the Mechanical trade and can be found under the Mechanical section. The code requirement for the smoke purge panel graphic representation of the building is also described under the Mechanical section.

C. All code-mandated smoke control dampers connected to the fire alarm system shall be UL listed for smoke control.

D. The smoke purge panel and control wiring for all devices on the panel are to be included in the electrical estimate.

E. Smoke and fire/smoke dampers in code-mandated smoke control and purge systems shall be supplied from the fire alarm 120 VAC emergency power panel.

F. Codes require duct smoke detectors to operate smoke and fire/smoke dampers. Most ventilation systems require duct smoke detectors within 5 ft. of the supply duct (upstream) to the smoke and fire/smoke dampers (there are systems that require duct smoke detectors at both supply and return ducts).

G. Smoke and fire/smoke dampers require a fire alarm relays within 3 ft. of dampers for both damper operation and for system monitoring (positive feedback).

4.6.4 CCTV
<<Under Development>>

4.6.5 CONTROL CENTER
<<Under Development>>

4.6.6 COMMAND CENTER
<<Under Development>>

4.6.7 PIDS
<<Under Development>>

4.6.8 RADIO
<<Under Development>>

4.7 COMPUTER CENTER REQUIREMENTS
<<Under Development>>
4.8 **ELECTRONIC SYSTEMS**

<<Under Development>>

4.9 **CORROSION CONTROL**

Corrosion control is to be provided for all projects by a combination of the following five primary methods:

- Materials Selection
- Coatings
- Inhibitors/Water Treatment
- Cathodic Protection
- Stray Current Monitoring, Mitigation, and Control

4.9.1 **MATERIALS SELECTION**

Corrosion shall be reduced through knowledge of the application and the selection of materials that are inherently corrosion resistant in the given application. Examples include stainless steel and cadmium plated components.

Corrosion effects shall be reduced by the proper selection of materials and design of the structure so as to avoid:

- Dissimilar metals in contact with each other
- Ponding of water in contact with the metals
- Crevices where oxygen concentration cells can form

4.9.2 **COATINGS**

Coatings shall be utilized on all underground steel pipelines per the following NACE Standard Practice (SP) and Recommended Practice (RP) guidelines:

- SP0169-2007, *Control of External Corrosion on Underground or Submerged Metallic Piping Systems*
- RP0105-2005, *Liquid Epoxy Coatings for External Repair, Rehabilitation and Weld Joints on Buried Steel Pipelines*
- SP0185-2007, *Extruded Polyolefin Resin Coating Systems With Soft Adhesives for Underground or Submerged Pipe*
- RP0188-1999, *Discontinuity (Holiday) Testing of Protective Coatings*
- RP0274, *High-Voltage Electrical Inspection of Pipeline Coatings*
Coatings on aboveground structures shall be provided as per the following Port Authority of New York & New Jersey standard specification:

- Division 9, Section 09910, “Painting”

4.9.3 Inhibitors/Water Treatment

Use industrial water treatment to reduce corrosion, scale forming deposits, and biological growths in heating and cooling systems.

Apply corrosion inhibiting compounds in chronic corrosion areas.

4.9.4 Cathodic Protection Systems

4.9.4.1 Design Surveys

Surveys shall be conducted before any design of underground utilities is performed.

The objectives of the design survey shall be to assess the environment in which the structure is to be installed and its susceptibility to corrosion that would affect the structure’s useful life, increase the risk of failures, or pose a risk to the public if it were to experience corrosion.

The objectives of the design survey shall also be to allow the determination of the need for cathodic protection or stray current monitoring, mitigation, and control, as well as provide the parameters that will be used in the cathodic protection design evaluation and calculations.

4.9.4.2 Tests To Be Performed

The survey shall include general information on the terrain along the route of the pipeline including:

- Type of terrain and vegetation, paving, drainage, etc.
- Visible relevant features and crossings (rivers, canals, roadways, railways, other pipelines).
- All other information that is considered relevant to the design of a cathodic protection system.

Soil resistivity measurements shall be taken along the route of the pipeline at pipeline depth. The number of measurements shall be based on the total length of the pipeline and on changes in terrain, features, etc.:

- For each type of soil, readings should be taken in at least two different locations. At each location a minimum of two measurements shall be carried out.
- Acceptable methods for soil resistivity measurements are:
 - Four terminal resistivity method (Wenner - ASTM G57).
 - Soil sample (soil box) resistivity method.

When the soil resistivity measurements are used to locate suitable places for surface groundbeds, the four-terminal method shall be used to determine the resistivity at greater depths (30 ft. maximum).

4.9.4.2.1 Soil Investigation

To determine the existence of aggressive soil characteristics, samples of soil at depths representative of the depths at which structures are to be buried shall be obtained and tested in the laboratory for pH, chloride ion, and sulfate ion concentration.
4.9.4.2.2 Current Drainage Tests

When designing a cathodic protection system for existing pipelines, buried or on-grade storage tanks, a current drainage test shall be performed to determine the current requirement and optimal current distribution. This may necessitate installation of one or more groundbeds and DC power sources (e.g., batteries, portable rectifiers), timer-units, and test facilities to the pipeline/tank under investigation. Pipeline isolation may need to be installed before meaningful current drainage tests can be carried out. The required current is determined when, after full polarization is achieved, the “OFF” potentials measured at regular intervals along the pipeline or around the tank perimeter are within the values indicated in the appropriate NACE Standard Practice (SP0169 for pipelines, RP0285 for USTs, and RP0193 for aboveground storage tanks).

4.9.4.2.3 Stray Currents

The designer shall investigate possible sources of detrimental DC stray currents and include provisions in the design of the corrosion protection system for mitigating the effects of such stray currents. If the effects of the stray currents cannot be measured or predicted prior to construction of the structure(s), the design shall incorporate testing, monitoring, and control provisions to allow the assessment of stray current effects on the structure(s) and the installation of the required mitigation and control provisions as a change order to the contract.

4.9.4.3 Documentation of Results

4.9.4.3.1 Tabulation of Data

All data obtained during the cathodic protection design survey shall be tabulated in a format approved by the Port Authority of New York & New Jersey Corrosion Protection Engineer, and shall include, as a minimum:

- Date and time
- Name of tester
- Test conditions, visual observations
- Instruments used (model, serial number)
- Diagrams of meter connections
- Data obtained at each test location, organized by test type (potentials, current drainage tests, soil resistivity)
- Plan drawing showing locations of tests, soil samples taken
- Laboratory results for soil investigation (pH, chloride ion concentration, sulfate ion concentration)

4.9.4.3.2 Analysis of Corrosivity

The designer shall perform an analysis of the data and draw conclusions regarding the aggressiveness of the soil/water environment and the need for the consideration of extraordinary corrosion protection measures. Characterization of the corrosivity shall be made as to “severely”, “highly”, “moderately”, or “slightly” is usually made to provide a measure of the significance of corrosion that will affect the structure to be buried. Most lists use resistivity as a leading indicator of the potential for corrosion.

4.9.4.3.3 Recommendations for Cathodic Protection

Once the analysis of corrosivity has been made, recommendations for the implementation of corrosion protection measures shall be made in accordance with the applicable NACE Standard Practice.
4.9.4.4 DESIGN BASIS

4.9.4.4.1 Applicable Standards
All cathodic protection designs shall be performed in accordance with the following NACE Standard SP and RP guidelines:

- SP01269-2007, Control of External Corrosion on Underground or Submerged Metallic Piping Systems
- RP0193-2001, External Cathodic Protection of On-Grade Carbon Steel Storage Tank Bottoms
- RP0285-2002, Corrosion Control of Underground Storage Tank Systems by Cathodic Protection
- RP0196-2004, Galvanic Anode Cathodic Protection of Internal Submerged Surfaces of Steel Water Storage Tanks

4.9.4.4.2 Cathodic Protection Criteria
The criteria for determination of adequate protection from corrosion shall be as per the appropriate recommended practice listed above.

4.9.4.4.3 Maintainability
The cathodic protection system shall be designed so as to allow all system components to be maintained in accordance with the referenced standards, and state and federal regulations. All equipment shall be installed in protected but accessible locations where they can be easily accessed for inspection, periodic monitoring, and maintenance. No other equipment shall be permitted to be stored or placed in front of or on top of the rectifiers, junction boxes, or test stations.

4.9.4.4.4 Testing/Monitoring Requirements
A testing schedule shall be clearly defined in the design documents, indicating the types of measurements, the locations that they are to be made, and the frequency of the measurements. The instrumentation and the data collection requirements shall also be specified.

4.9.4.5 GALVANIC ANODE CATHODIC PROTECTION SYSTEMS
Galvanic systems are also known as sacrificial anode systems because an anode (usually zinc or magnesium) corrodes instead of the protected metal. Because the anode corrodes instead of the metal that it is protecting, the anode is said to sacrifice itself. Sacrificial anodes are connected directly to the structure to be protected by either welding or mechanical connection of lead wires. Galvanic systems are generally limited to those tank components that are well coated with a dielectric material (sti-P3® tanks or fusion-bonded epoxy-coated steel piping) because the available current output of these systems is low. Attempts to protect long runs of uncoated piping or uncoated tanks generally are not practical because the useful life of the anodes is too short or the number of anodes needed is too great.

4.9.4.5.1 System Design Life
The minimum design life for galvanic anodes shall be 15 years.
4.9.4.6 **IMPRESSED CURRENT CATHODIC PROTECTION SYSTEMS**

Impressed current systems are sometimes called rectifier systems because they utilize a device (a rectifier) to convert an external AC power source to the required DC power source. In this type of system, anodes are installed in the soil around the structure to be protected and the DC power is supplied to the anodes through buried wires. The AC power to the rectifier cannot be interrupted except when conducting maintenance or testing activities. Normally, a dedicated and protected circuit is provided for the impressed current system so that the power cannot be inadvertently cut off. In impressed current systems, the protected structure is bonded to the DC power system to complete the electrical circuit. It is critical that the anodes are connected to the positive terminal and the protected structure to the negative terminal of the rectifier. Reversal of the lead wires will make the components of the tank system anodic and can cause a rapid failure of the tank system due to corrosion. In addition, it is critical that all wire connections and splices are well insulated. Any breaks in the wiring insulation will allow current to leave the wire at that point and a rapid failure of the wire can occur due to corrosion. Impressed current systems are generally installed on those tank systems that were installed prior to the effective date of the UST regulations since these tanks usually do not have a good dielectric coating. The level of cathodic protection provided by an impressed current system can be adjusted since the voltage produced by the rectifier can be changed. Because conditions that affect the level of cathodic protection needed are likely to change over time, adjustment of the rectifier is frequently necessary.

Impressed current anodes shall be selected to provide a minimum 30-year life.

Impressed current anode cables and anode connections shall be designed to withstand the harsh environments, including acids and petroleum products found at Port Authority of New York & New Jersey facilities.

System designs shall include the provisions for measuring individual anode currents where practical.

4.9.4.7 **CALCULATIONS**

Calculations shall be provided for all cathodic protection system designs.

For galvanic anode systems, calculations shall include the following steps:

A. Calculation of surface area of structure to be protected.
B. Estimated cathodic protection current requirements based on assumed current density and bare surface area (% holidays).
C. Selection of anode type and calculation of anode-to-electrolyte resistance.
D. Calculation of anode output current based on the calculated resistance and the open circuit potential between the anode and the protected structure.
E. Calculation of number of anodes required to deliver the total calculated current requirement for the structure based on the individual anode current output and paralleling factors.
F. Calculation of system life based on the anode current output, consumption rate and efficiency of the anode alloy, and the weight of the anode.

For impressed current systems, calculations shall include the following steps:

A. Calculation of surface area of structure to be protected, as for galvanic anode system design, except the option of performing current requirement tests to establish the total current required may be utilized if it is practical to perform those tests.
B. Determination of the total circuit resistance for the proposed impressed current anodes, cables, etc.
C. Determination of rectifier voltage using the total resistance and the total current required.
4.9.4.8 **ELECTRICAL ISOLATION**

4.9.4.8.1 **Applicable Standards**

Electrical isolation of pipelines to be cathodically protected shall be provided in accordance with the following NACE RP guideline:

- RP0286, *Electrical Isolation of Cathodically Protected Pipelines*

4.9.4.8.2 **Design Approach**

The pipeline to be protected shall be electrically isolated from other piping systems that are of the following characteristics:

- Pipelines connected to grounded structures or facilities or to existing structures that are uncoated or poorly coated.
- Pipelines connected to tenant facilities (e.g., fuel transfer lines serving an airport terminal).

4.9.4.9 **DOCUMENT PREPARATION**

4.9.4.9.1 **Area Plan Drawing**

4.9.4.9.2 **Location of Existing Cathodic Protection Systems**

4.9.4.9.3 **Locations of Major Cathodic Protection System Components**

4.9.4.9.4 **Locations of All Cathodic Protection Test Stations**

4.9.4.9.5 **Specifications**

Specifications shall be prepared specifically for the system to be installed and shall include as a minimum:

- Quality Assurance Provisions—Qualifications of the personnel performing the design and all other work associated with the installation and testing of the system.
- Materials—Complete materials specifications for all items including anodes, rectifiers, cables, splicing materials, test stations, reference electrodes, junction boxes, and remote monitoring equipment.
- Installation of the system, including testing and documentation of the results.
- Actions that should be taken to resolve deficiencies and issues such as stray current interference.

4.9.4.10 **SYSTEM COMMISSIONING**

4.9.4.10.1 **Tests To Be Performed**

After the installation of a cathodic protection system, it should be commissioned and the following tests performed:

- Impressed current operating characteristics (voltage and current).
- Impressed current anode current output levels.
- Initial potential survey-structure-to-electrolyte potentials shall be measured at each test station. Baseline potentials shall be obtained and compared to the energized and polarized potentials.
Effectiveness of all installed electrical isolation devices.
Galvanic anode current output levels.

4.9.4.10.2 Rectification of Deficiencies
After performance of tests listed above.

4.9.4.10.3 Stray Current Interference Testing and Resolution

4.9.5 Stray Current Monitoring, Mitigation, and Control
In areas where the results of stray current tests indicate severe stray current effects will be felt on the structures to be installed, stray current mitigation, control, and monitoring provisions shall be incorporated into the design of the structures. These measures shall include:

4.9.5.1 Electrical Continuity Bonding

4.9.5.1.1 Bonding Across Push-On Joints

4.9.5.1.2 Bonding Across Bolted Joint Assemblies

4.9.5.1.3 Bonding Across Gasketed Joint Assemblies

4.9.5.1.4 Bonding Across Vaults

4.9.5.1.5 Bonding of Components of Mechanical Couplings

4.9.5.2 Test Facilities
Test wires connected to buried pipes, reinforcing steel, and other metallic structures
Permanent reference electrodes installed adjacent to the buried structures under test

4.9.5.3 Stray Current Control
Bonding cables of suitable gauge to allow drainage of stray currents from buried structures to substation negative bus
Bonding stations including current measuring shunts to allow measurement of

4.9.5.4 Remote Monitoring Systems
Remote monitoring systems shall be provided where it is necessary to monitor the trends in stray current levels, due to changing characteristics in the stray current sources, such as PATH rail facilities, which are subject to increased stray current levels as the rail-to-earth resistance decreases, or train operating loads increase.

The remote monitoring system shall be designed with a sufficient number of channels to measure all required parameters with provisions for expansion by adding additional channel modules.

The remote monitoring systems shall be interfaced with the local data network via an ethernet connection.
4.10 **LIGHTNING PROTECTION**

4.10.1 **REFERENCE**

- Port Authority of New York & New Jersey Technical Specifications Division 16, Section 16670, Lightning Protection for Structures
- NFPA 780, Standard for the Installation of Lightning Protection Systems
- NEC, Article 250
- The Lightning Protection Institute, LPI 175
- UL Standard #96 and 96A

Evaluate need to provide Lightning Protection System (LPS) for the building/structure using NFPA 780, Annex L – Lightning Risk Assessment Calculation Guide to determine the risk of damage to the building due to lightning. Consider the surrounding structures and any attached structure to the building for lightning risk evaluation.

LPS consists of the following elements working together to provide a permanent low-impedance electrically conductive path designed and intended to carry lightning current to the ground and prevent damage from lightning:

- Air terminals
- Conductor
- Bonds with metallic bodies
- Ground terminations and
- Surge arrestors

Specify size for all elements according to NFPA 780, Chapter 4, for Class II Structures. Type of materials and labeling shall be as specified in the Port Authority of New York & New Jersey Specification Section 16670.

Specify size of air terminals and ground terminals as per Port Authority of New York & New Jersey Specification Section 16670. Air Terminals shall be provided for metal stacks, flues, and mechanical equipment having a metal thickness of less than 3/16" and not within a zone of protection of an air terminal. Equipment with metal thickness 3/16" or greater shall be bonded per code requirement.

Minimum conductor size shall be #2/0 AWG, bare-stranded copper conductor.

Interconnect all ground rods with #4/0 AWG bare-stranded copper conductor 3 ft. below grade and to power system grounding electrode conductor in accordance with the NEC Article 250.

Provide a note on the contract drawing stating, "Lightning Protection System shall meet all applicable requirements of NFPA 780 and UL 96A. The final installation shall meet and shall be certified as UL Master Label System."

Follow NFPA 780 design guidelines to design LPS.

Structural steel of existing structures may be substituted for down conductors. Bond the conductors to steel columns. Building steel shall be grounded at the interval of 85 ft. around the perimeter of the building using 5/8 in. x 10 ft. -long copper-clad ground rod.
5.0 **REFERENCE MATERIALS**

5.1 **TECHNICAL AND CODE STANDARDS**

5.1.1 **BUILDING CODES**
<<Under Development>>

5.2 **GUIDELINES**

5.2.1 **PORT AUTHORITY OF NY & NJ**
<<Under Development>>

5.2.2 **FEDERAL AND STATE**
<<Under Development>>

5.3 **REGULATORY REQUIREMENTS**

5.3.1 **FEDERAL AND STATE**
<<Under Development>>

5.4 **CONTRACT DOCUMENTS**

5.5 **CONTRACT DRAWINGS**

5.6 **CAD STANDARDS**
<<Under Development>>

5.7 **NOTE STANDARDS**
<<Under Development>>

5.8 **CONTRACT SPECIFICATIONS**

5.8.1 **STANDARD SPECIFICATIONS**\(^{(5)}\)
Note: Look for Division 16 and Standard Specifications Index

5.8.2 **CUSTOM SPECIFICATIONS**
<<Under Development>>

5.9 **NET COST**

5.9.1 **DEFINITION/PROCEDURE**
<<Under Development>>
5.9.2 **SOLE SOURCE**
<<Under Development>>

5.9.3 **DEFINITION/PROCEDURE**
<<Under Development>>
Appendix A
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ampere</td>
</tr>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>ADA</td>
<td>Americans with Disabilities Act</td>
</tr>
<tr>
<td>ADAAG</td>
<td>Americans with Disabilities Act Accessibility Guidelines</td>
</tr>
<tr>
<td>AFF</td>
<td>Above Finish Floor</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>ASHRAE</td>
<td>American Society of Heating, Refrigeration and Air-Conditioning</td>
</tr>
<tr>
<td>ATS</td>
<td>Automatic Transfer Switch</td>
</tr>
<tr>
<td>AWG</td>
<td>American Wire Gauge</td>
</tr>
<tr>
<td>BIL</td>
<td>Basic Impulse Level</td>
</tr>
<tr>
<td>CB</td>
<td>Circuit Breaker</td>
</tr>
<tr>
<td>CCT</td>
<td>Correlated Color Temperature</td>
</tr>
<tr>
<td>CCTV</td>
<td>Closed Circuit Television</td>
</tr>
<tr>
<td>Co</td>
<td>Carbine Monoxide</td>
</tr>
<tr>
<td>CPE</td>
<td>Chlorinated Polyethylene</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>CRI</td>
<td>Color Rendering Index</td>
</tr>
<tr>
<td>CT</td>
<td>Current Transformer</td>
</tr>
<tr>
<td>CTSS</td>
<td>Closed Transition Selector Switch</td>
</tr>
<tr>
<td>CU</td>
<td>Coefficient of Utilization</td>
</tr>
<tr>
<td>DACT</td>
<td>Digital Alarm Communicator Transmitter</td>
</tr>
<tr>
<td>DALI</td>
<td>Digital Addressable Lighting Interface</td>
</tr>
</tbody>
</table>
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>EMT</td>
<td>Electrical Metallic Tubing</td>
</tr>
<tr>
<td>EO</td>
<td>Executive Order</td>
</tr>
<tr>
<td>EOL</td>
<td>Engineering OnLine</td>
</tr>
<tr>
<td>EPR</td>
<td>Ethylene-Propylene-Rubber</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FACP</td>
<td>Fire Alarm Control Panel</td>
</tr>
<tr>
<td>FM</td>
<td>Factory Mutual</td>
</tr>
<tr>
<td>FRE</td>
<td>Fiberglass Reinforced Epoxy</td>
</tr>
<tr>
<td>FSC</td>
<td>Flat Strap Cable</td>
</tr>
<tr>
<td>GFD</td>
<td>Ground Fault Detector</td>
</tr>
<tr>
<td>GFPU</td>
<td>Ground Fault Pick-Up</td>
</tr>
<tr>
<td>HID</td>
<td>high intensity discharge</td>
</tr>
<tr>
<td>HLO</td>
<td>High Light Output</td>
</tr>
<tr>
<td>HO</td>
<td>High Output</td>
</tr>
<tr>
<td>HP</td>
<td>Horse Power</td>
</tr>
<tr>
<td>HPS</td>
<td>High-Pressure Sodium</td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating, Ventilating, and Air Conditioning</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>ICCP</td>
<td>Impressed Current Type CP</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IESNA</td>
<td>Illuminating Engineering Society of North American</td>
</tr>
<tr>
<td>IMC</td>
<td>Intermediate Metal Conduit</td>
</tr>
</tbody>
</table>
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>INST</td>
<td>Instantaneous</td>
</tr>
<tr>
<td>KCmil</td>
<td>Thousand Circular Mil</td>
</tr>
<tr>
<td>KVA</td>
<td>Kilovolt-Ampere</td>
</tr>
<tr>
<td>KW</td>
<td>Kilowatt</td>
</tr>
<tr>
<td>LAHSO</td>
<td>Land and Hold Short Operations</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid Crystal Display</td>
</tr>
<tr>
<td>LDPE</td>
<td>Low-Density-Polyethylene</td>
</tr>
<tr>
<td>LED</td>
<td>Light-Emitting Diode</td>
</tr>
<tr>
<td>LEED</td>
<td>Leadership in Energy and Environmental Design</td>
</tr>
<tr>
<td>LLF</td>
<td>Light Loss Factor</td>
</tr>
<tr>
<td>LOTO</td>
<td>Lockout/Tagout</td>
</tr>
<tr>
<td>LTD</td>
<td>Long Time Delay</td>
</tr>
<tr>
<td>LTPU</td>
<td>Long Time Pick-Up</td>
</tr>
<tr>
<td>MCC</td>
<td>Motor Control Center</td>
</tr>
<tr>
<td>MER</td>
<td>Mechanical Equipment Room</td>
</tr>
<tr>
<td>MH</td>
<td>Metal Halide</td>
</tr>
<tr>
<td>MLPW</td>
<td>Mean Lumens Per Watt</td>
</tr>
<tr>
<td>MSS</td>
<td>Mode Selector Switch</td>
</tr>
<tr>
<td>MVA</td>
<td>Megavolt-Ampere</td>
</tr>
<tr>
<td>NACB</td>
<td>Notification Appliance Circuit Booster</td>
</tr>
<tr>
<td>NACE</td>
<td>National Association of Corrosion Engineers</td>
</tr>
<tr>
<td>NAVAID</td>
<td>Navigation/al Aid</td>
</tr>
<tr>
<td>NEC</td>
<td>National Electric Code</td>
</tr>
</tbody>
</table>
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEMA</td>
<td>National Electrical Manufacturers Association</td>
</tr>
<tr>
<td>NESC</td>
<td>National Electrical Safety Code</td>
</tr>
<tr>
<td>NFPA</td>
<td>National Fire Protection Association</td>
</tr>
<tr>
<td>NJDEP</td>
<td>New Jersey Department of Environmental Protection</td>
</tr>
<tr>
<td>NLO</td>
<td>Normal Light Output</td>
</tr>
<tr>
<td>NYCBC</td>
<td>New York City Building Code</td>
</tr>
<tr>
<td>NYCT</td>
<td>New York City Transit</td>
</tr>
<tr>
<td>NYS ECC</td>
<td>New York State, Energy Conservation Construction Code</td>
</tr>
<tr>
<td>NYSDEC</td>
<td>New York State Department of Environmental Conservation</td>
</tr>
<tr>
<td>PA</td>
<td>Port Authority</td>
</tr>
<tr>
<td>PS</td>
<td>Pulse Start</td>
</tr>
<tr>
<td>PT</td>
<td>Potential Transformer</td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinyl Chloride</td>
</tr>
<tr>
<td>RA</td>
<td>Remote Annunciator</td>
</tr>
<tr>
<td>RGB</td>
<td>Red-Green-Blue</td>
</tr>
<tr>
<td>RGS</td>
<td>Rigid Galvanized Steel</td>
</tr>
<tr>
<td>RLO</td>
<td>Reduced Light Output</td>
</tr>
<tr>
<td>RP</td>
<td>Recommended Practice</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control and Data Acquisition</td>
</tr>
<tr>
<td>SMGCS</td>
<td>Surface Movement Guidance Control System</td>
</tr>
<tr>
<td>SP</td>
<td>Standard Practice</td>
</tr>
<tr>
<td>STD</td>
<td>Short Time Delay</td>
</tr>
<tr>
<td>STPU</td>
<td>Short Time Pick-Up</td>
</tr>
</tbody>
</table>
ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCLP</td>
<td>Toxicity Characteristic Leaching Procedure</td>
</tr>
<tr>
<td>THD</td>
<td>Total Harmonic Distortion</td>
</tr>
<tr>
<td>THWN</td>
<td>Thermoplastic High Water-Resistant Nylon Coated</td>
</tr>
<tr>
<td>TVSS</td>
<td>Transient Voltage Surge Suppressor</td>
</tr>
<tr>
<td>UL</td>
<td>Underwriters Laboratories, Inc.</td>
</tr>
<tr>
<td>UPS</td>
<td>Uninterruptible Power Supply</td>
</tr>
<tr>
<td>UST</td>
<td>Underground Storage Tank</td>
</tr>
<tr>
<td>VAC</td>
<td>Volts Alternating Current</td>
</tr>
<tr>
<td>VCE</td>
<td>Vertical Circulation Elements</td>
</tr>
<tr>
<td>VFD</td>
<td>Variable Frequency Drive</td>
</tr>
<tr>
<td>VISAID</td>
<td>Visual Aid</td>
</tr>
<tr>
<td>VRLA</td>
<td>Value Rated Lead Acid</td>
</tr>
<tr>
<td>XHHW</td>
<td>XLP High Heat-Resistant Water-Resistant</td>
</tr>
</tbody>
</table>
Appendix B
NOTES

1. Manhole frames and covers rated to support loads shall be cast from concrete with a minimum compressive strength of 4000 psi at 28 days.

2. Minimum spigot lengths required for reinforcing bars in slide elements shall be 60 in. (150 cm).

3. All pre-cast concrete shall conform to the requirements of F.A. Specification Sections 833.2 and 833.3 with a 28 day design compressive strength of 4000 psi. In addition, where specifically called for on the plans, very high early strength concrete shall have a minimum design compressive strength of 2000 psi. The contractor shall have the option of including the components of the manhole. However, the reinforcement shown on these sheets is the minimum that shall be provided. Submit details to the Engineer.

4. GROUT MAY BE NON-SEMI-DURABLE OR/AND DOMESTIC MATERIAL IN CONFORMANCE WITH F.A. SPECIFICATION SECTION E 5-45.5.

5. All other materials shall be in conformance with F.A. Specification Sections 833.2 and 833.3 with a 28 day design compressive strength of 4000 psi. In addition, where specifically called for on the plans, very high early strength concrete shall have a minimum design compressive strength of 2000 psi. The contractor shall have the option of including the components of the manhole. However, the reinforcement shown on these sheets is the minimum that shall be provided. Submit details to the Engineer.

6. Reinforcing bars shall be ASTM A-1018 Grade E.

7. All other materials shall be in conformance with F.A. Specification Sections 833.2 and 833.3 with a 28 day design compressive strength of 4000 psi. In addition, where specifically called for on the plans, very high early strength concrete shall have a minimum design compressive strength of 2000 psi. The contractor shall have the option of including the components of the manhole. However, the reinforcement shown on these sheets is the minimum that shall be provided. Submit details to the Engineer.

8. WATERSTOP:

 1. ALL CAST-IN-PLACE CONCRETE SHALL CONFORM TO THE REQUIREMENTS OF F.A. SPECIFICATION SECTIONS 833.2 AND 833.3 WITH A 28 DAY DESIGN COMpressive STRENGTH OF 4000 PSI. IN ADDITION, WHERE SPECIFICALLY CALLED FOR ON THE PLANS, VERY HIGH EARLY STRENGTH CONCRETE SHALL HAVE A MINIMUM DESIGN COMpressive STRENGTH OF 2000 PSI. THE CONTRACTOR SHALL HAVE THE OPTION OF INCLUDING THE COMPONENTS OF THE MANHOLE. HOWEVER, THE REINFORCEMENT SHOWN ON THESE SHEETS IS THE MINIMUM THAT SHALL BE PROVIDED. SUBMIT DETAILS TO THE ENGINEER.

9. DUCT BANKS SHALL PENETRATE THE MANHOLE WALLS OF A MANHOLE ONLY.

10. CONCRETE SHEETS SHALL BE TERMINATED WITH END SEAL FLUSH WITH INSIDE WALL.

11. SECTION F-F

 1. JOINT WATERSTOP TYPICAL THROUGHOUT SEE NOTE 3.
 2. JOINT WATERSTOP TYPICAL THROUGHOUT SEE NOTE 3.
 3. JOINT WATERSTOP TYPICAL THROUGHOUT SEE NOTE 3.

12. MANHOLE COVER FRAME (SEE NOTES)

 1. MANHOLE COVER FRAME (SEE NOTES)
 2. MANHOLE COVER FRAME (SEE NOTES)

13. MANHOLE COVER FRAME (SEE NOTES)
ELECTRICAL STANDARD DETAILS

SECTION B-B

ELEVATION

TYPICAL DETAIL OF WINDOW & SIDING CONNECTION FOR DUCT

NOTES
1. DUCT BANKS SHALL PENETRATE THE NARROW WALLS OF A MANHOLE ONLY.
2. CONDUIT SHALL BE TERMINATED WITH END BELL FLUSH WITH INSIDE WALL.
3. INSERTS SHALL BE HOT DIPPED GALVANIZED STEEL, UNDISTORT, GALVANIZED IN ACCORDANCE WITH ASTM A153 and A153-L series P-2000 or APPROVED EQUAL COMPLETE WITH END CAPS OF SIMILAR MATERIAL AND FINISHED WITH PLASTIC COATED FILLER.
ELECTRICAL STANDARD DETAILS

NOTES

1. MANHOLE FRAMES AND COVERS NEEDED TO SUPPORT HIGH-44 TRUCK LOADS SHALL BE EFFECTIVE. COVER SHALL HAVE STAINLESS STEEL BOLTS (TYPE 304) AND NON- PENETRATING PITCH HOLES. MANHOLE FRAME AND COVER SHALL BE CAMPBELL FOUNDRY #1012 OR APPROVED EQUAL.

2. WHEN THE HEIGHT OF THE COLLAR THAT SUPPORTS THE MANHOLE COVER IS LESS THAN 4 INCHES, A SINGLE COURSE OF SOLID CONCRETE MASONRY MAY BE USED TO SUPPORT THE COVER. IF MASONRY IS USED, MASONRY SHALL BE 3 5/8 INCHES X 7 5/8 INCHES X 8 INCHES. IF THE COLLAR IS GREATER THAN 4 INCHES HIGH, THE COLLAR SHALL BE POURED IN PLACE CONCRETE.
ELECTRICAL STANDARD DETAILS

TYPICAL DETAIL OF PULLING HOOK

NOTES

1. PULLING HOOK SHALL BE ASTM A36 STEEL, HOT DIPPED GALVANIZED IN ACCORDANCE WITH ASTM A525. STEEL SHALL BE WELDED TO REINFORCING. WELDED AREA SHALL BE PREPARED AND CLEANED IN ACCORDANCE WITH SECTION D9615 PART 3.01.1 AND 2.01.4 AND SHALL BE PAINTED WITH GALVANIZING ZINC RICH PRIMER IN ACCORDANCE WITH ASTM A765.
ELECTRICAL STANDARD DETAILS

GROUNNING OF ELECTRICAL MANHOLES

NOTE
1. Paint all ground connections with asphalt base paint.
ELECTRICAL STANDARD DETAILS

SECTION D-D

NOTES
1. FOR SIZE AND NUMBER OF CONDUCTS AS WELL AS DUCTBANK FORMATION, SEE PLANS.
2. COMMUNICATIONS CONDUIT GROUP SHALL BE SEPARATED FROM THE POWER GROUP
ON EITHER LEFT OR RIGHT SIDE AS SHOWN ON PLANS.

DUCTBANK DETAILS - TYPICAL ARRANGEMENT

SECTION G-G

DEAD-ENDING DUCTBANKS

DUCT BANK DETAILS

ATTACHMENT E1

SHEET E6

THE PORT AUTHORITY OF NY & NJ

Last Updated: 08/29/2018
Reviewed/Released 2018 v2.0
ELECTRICAL STANDARD DETAILS

[Diagram of electrical standard details]

Last Updated: 08/29/2018
Reviewed/Released 2018 v2.0
Appendix C
LOW VOLTAGE
LOAD LETTER SAMPLES

<<Under Development>>
Appendix D
MEDIUM VOLTAGE (5kV-35kV SYSTEM)
LOAD LETTER SAMPLES

<<Under Development>>
6.0 **REFERENCE LINKS**